462 research outputs found

    A Bayesian approach to filter design: detection of compact sources

    Full text link
    We consider filters for the detection and extraction of compact sources on a background. We make a one-dimensional treatment (though a generalization to two or more dimensions is possible) assuming that the sources have a Gaussian profile whereas the background is modeled by an homogeneous and isotropic Gaussian random field, characterized by a scale-free power spectrum. Local peak detection is used after filtering. Then, a Bayesian Generalized Neyman-Pearson test is used to define the region of acceptance that includes not only the amplification but also the curvature of the sources and the a priori probability distribution function of the sources. We search for an optimal filter between a family of Matched-type filters (MTF) modifying the filtering scale such that it gives the maximum number of real detections once fixed the number density of spurious sources. We have performed numerical simulations to test theoretical ideas.Comment: 10 pages, 2 figures. SPIE Proceedings "Electronic Imaging II", San Jose, CA. January 200

    Non-blind catalogue of extragalactic point sources from the Wilkinson Microwave Anisotropy Probe (WMAP) first 3--year survey data

    Get PDF
    We have used the MHW2 filter to obtain estimates of the flux densities at the WMAP frequencies of a complete sample of 2491 sources, mostly brighter than 500 mJy at 5 GHz, distributed over the whole sky excluding a strip around the Galactic equator (b < 5 degrees). After having detected 933 sources above the 3 sigma level in the MHW2 filtered maps - our New Extragalactic WMAP Point Source (NEWPS_3sigma) Catalogue - we are left with 381 sources above 5 sigma in at least one WMAP channel, 369 of which constitute our NEWPS_5sigma catalogue. It is remarkable to note that 98 (i.e. 26%) sources detected above 5 sigma are `new', they are not present in the WMAP catalogue. Source fluxes have been corrected for the Eddington bias. Our flux density estimates before such correction are generally in good agreement with the WMAP ones at 23 GHz. At higher frequencies WMAP fluxes tend to be slightly higher than ours, probably because WMAP estimates neglect the deviations of the point spread function from a Gaussian shape. On the whole, above the estimated completeness limit of 1.1 Jy at 23 GHz we detected 43 sources missed by the blind method adopted by the WMAP team. On the other hand, our low-frequency selection threshold left out 25 WMAP sources, only 12 of which, however, are 5 sigma detections and only 3 have fluxes S at 23 GHz > 1.1 Jy. Thus, our approach proved to be competitive with, and complementary to the WMAP one.Comment: 18 pages, 6 figures, 5 tables. Accepted for publication in ApJ

    Unravelling mechanistic insights in the platinum-catalysed dihydroalkoxylation of allenes

    Get PDF
    The mechanism of the platinum-catalysed dihydroalkoxylation of allenes to give acetals has been studied experimentally and by computational methods. Our findings further explain divergent reactivity encountered for platinum- and gold-vinyl intermediates after the first nucleophilic attack onto the coordinated allene, as well as provide new details on the catalytic cycle with platinum, uncovering enol ethers as resting states of the catalytic cycle, a S(E)Ox process via Pt(V)-H as the final protodemetallation step after the second nucleophilic attack when neutral platinum complexes are used, and a fast acid promoted addition of methanol to enol ethers when cationic platinum complexes are employed

    Detection of point sources on two-dimensional images based on peaks

    Get PDF
    This article considers the detection of point sources in two dimensional astronomical images. The detection scheme we propose is based on peak statistics. We discuss the example of the detection of far galaxies in Cosmic Microwave Background experiments throughout the paper, although the method we present is totally general and can be used in many other fields of data analysis. We assume sources with a Gaussian profile --that is a fair approximation of the profile of a point source convolved with the detector beam in microwave experiments-- on a background modeled by a homogeneous and isotropic Gaussian random field characterized by a scale-free power spectrum. Point sources are enhanced with respect to the background by means of linear filters. After filtering, we identify local maxima and apply our detection scheme, a Neyman-Pearson detector that defines our region of acceptance based on the a priori pdf of the sources and the ratio of number densities. We study the different performances of some linear filters that have been used in this context in the literature: the Mexican Hat wavelet, the matched filter and the scale-adaptive filter. We consider as well an extension to two dimensions of the biparametric scale adaptive filter (BSAF). The BSAF depends on two parameters which are determined by maximizing the number density of real detections while fixing the number density of spurious detections. For our detection criterion the BSAF outperforms the other filters in the interesting case of white noise.Comment: 21 pages, 3 figures, version accepted for publication on EURASIP Journal on Applied Signal Processing: Applications of Signal Processing in Astrophysics and Cosmolog

    Early evolution of galaxies and of large-scale structure from CMB experiments

    Full text link
    Next generation CMB experiments with arcmin resolution will, for free, lay the foundations for a real breakthrough on the study of the early evolution of galaxies and galaxy clusters, thanks to the detection of large samples of strongly gravitationally lensed galaxies and of proto-clusters of dusty galaxies up to high redshifts. This has an enormous legacy value. High resolution follow-up of strongly lensed galaxies will allow the direct investigation of their structure and kinematics up to z~6, providing direct information on physical processes driving their evolution. Follow-up of proto-clusters will allow an observational validation of the formation history of the most massive dark matter halos up to z~4, well beyond the redshift range accessible via X-ray or SZ measurements. These experiments will also allow a giant leap forward in the determination of polarization properties of extragalactic sources, and will provide a complete census of cold dust available for star formation in the local universe.Comment: Science white paper submitted to the Astro2020 US Decadal Surve

    Powellsnakes II: a fast Bayesian approach to discrete object detection in multi-frequency astronomical data sets

    Get PDF
    Powellsnakes is a Bayesian algorithm for detecting compact objects embedded in a diffuse background, and was selected and successfully employed by the Planck consortium in the production of its first public deliverable: the Early Release Compact Source Catalogue (ERCSC). We present the critical foundations and main directions of further development of PwS, which extend it in terms of formal correctness and the optimal use of all the available information in a consistent unified framework, where no distinction is made between point sources (unresolved objects), SZ clusters, single or multi-channel detection. An emphasis is placed on the necessity of a multi-frequency, multi-model detection algorithm in order to achieve optimality

    Radio sources in next-generation CMB surveys

    Get PDF
    CMB surveys provide, for free, blindly selected samples of extragalactic radio sources at much higher frequencies than traditional radio surveys. Next-generation, ground-based CMB experiments with arcmin resolution at mm wavelengths will provide samples of thousands radio sources allowing the investigation of the evolutionary properties of blazar populations, the study of the earliest and latest stages of radio activity, the discovery of rare phenomena and of new transient sources and events. Space-borne experiments will extend to sub-mm wavelengths the determinations of the SEDs of many hundreds of blazars, in temperature and in polarization, allowing us to investigate the flow and the structure of relativistic jets close to their base, and the electron acceleration mechanisms. A real breakthrough will be achieved in the caracterization of the polarization properties. The first direct counts in polarization will be obtained, enabling a solid assessment of the extra-galactic source contamination of CMB maps and allowing us to understand structure and intensity of magnetic fields, particle densities and structures of emitting regions close to the base of the jet.Comment: Science white paper submitted to the Astro2020 US Decadal Surve
    corecore