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ABSTRACT
PowellSnakes (PwS) is a Bayesian algorithm for detecting compact objects embedded in a
diffuse background, and was selected and successfully employed by the Planck consortium
in the production of its first public deliverable: the Early Release Compact Source Catalogue
(ERCSC). We present the critical foundations and main directions of further development of
PwS, which extend it in terms of formal correctness and the optimal use of all the available
information in a consistent unified framework, where no distinction is made between point
sources (unresolved objects), Sunyaev–Zel’dovich (SZ) clusters, single- or multi-channel
detection. An emphasis is placed on the necessity of a multi-frequency, multi-model detection
algorithm in order to achieve optimality.
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1 IN T RO D U C T I O N

The detection and characterization of discrete objects is a common
problem in many areas of astrophysics and cosmology. Indeed, every
data reduction process must resort to some form of compact object
detection, since either the objects themselves are the goal of the
study or they act as contaminants and therefore must be removed.
In such analyses, the key step usually involves the separation of a
localized object signal from a diffuse background, defined as all
contributions to the image aside from the objects of interest.

A well-established method to address this issue is to assume
that most of the pixels are part of the background exclusively1,
the background is smoothly varying, i.e. has a characteristic length
scale much larger than that of the objects of interest and the ob-
jects are bright compared with the background. A successful exam-
ple of an object detection algorithm based on these assumptions is
SEXTRACTOR (Bertin & Arnouts 1996). Its first step is to estimate the
image background. The algorithm builds up an intensity histogram
iteratively and clips it around its median. The resulting mesh (re-
sembling a ‘swiss-cheese’) is then bilinearly interpolated to fill in
the holes. After this background has been subtracted, the detection
and characterization of the objects is performed either by looking
for sets of connected pixels above a given threshold or by boosting
the image maxima with the help of an ‘on-the-fly’ convolution us-
ing a pre-defined kernel or the beam point spread function (PSF).
Despite their general acceptance, such methods run into difficul-

�E-mail: carvalho@mrao.cam.ac.uk (PC); graca@caltech.edu (GR);
mph@mrao.cam.ac.uk (MPH); a.n.lasenby@mrao.cam.ac.uk (AL)
1 This is possible only if the fields are not very densely packed with objects.

ties when the characteristic extent of the fluctuations of the diffuse
background matches the size and the amplitudes of the objects of
interest. Moreover, problems also arise when dealing with low or
very low signal-to-noise ratio (SNR) data, when the rms level of
the background is comparable to, or even somewhat larger than, the
amplitude of the localized objects of interest. A good example of
this situation is the detection of the Sunyaev–Zel’dovich (Sunyaev
& Zeldovich 1972) (SZ) effect in galaxy clusters, which have char-
acteristic scales similar to that of the primordial CMB emission,
and at the same time are very faint and extended. In such cases, tra-
ditional methods fail to provide a statistically supported prediction
about the uncertainties on the parameter estimates.

The standard approach for dealing with such difficulties is to
employ linear filtering, which is an extremely well-developed field,
very firmly rooted in the principles of the orthodox school of statis-
tics and signal processing (Van Trees 2001). These methods usually
start by applying a linear filter ψ(x) to the original image d(x), and
instead analyse the resulting filtered field. The filter is most often
constructed by assuming a given (possibly parametrized) spatial
template, τ (x), for the objects of interest. Depending on the appli-
cation, this profile may contain parameters (to be estimated) and
already include the beam spreading effects. The common design
goals for the filter follow the traditional, orthodox figures of merit:
unbiasedness and efficiency. The optimal solution under these con-
straints is well known to be the matched filter (MF; North 1943).
One may consider the filtering process as optimally boosting (in
a linear sense) the signal from discrete objects, while simultane-
ously suppressing the emission from the background. The filtering
methodology has yet another major advantage of being extremely
fast and very simple to implement using ‘off-the-shelf’ routines
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(such as Fast Fourier Transforms (FFTs)). The uncertainties in
the parameter estimates are usually obtained from simulations. In
practice, however, implementations of the filtering codes must be
supported by ancillary steps in order to cope with the artefacts
introduced as a consequence of the statistical description of the de-
tection process being incomplete (Melin, Bartlett & Delabrouille
2006; López-Caniego et al. 2007).

A natural evolution of the MF, the matched multi-filter (MMF),
follows exactly the same underlying principles and extends them
to multi-channel data sets (Herranz et al. 2002a; Herranz & Sanz
2008; Lanz et al. 2010, 2011). The simultaneous multi-frequency
analysis of a set of images has the immediate advantage of exploit-
ing the objects’ distinctive spectral signature, if any. Two further
advantages of this technique are: (i) it boosts the signal from the
objects of interest simply by adding more data; and (ii) it improves
the elimination of the background components by taking advantage
of their correlation between channels. Once again, the thermal SZ
effect embedded in primordial CMB emission provides a very good
example. Owing to the well-defined and unique frequency depen-
dence of the SZ effect, it is possible to design a filter that combines
multi-frequency maps to make possible the extraction of deep cata-
logues even if the SZ component is sub-dominant in all the channels
(Planck Collaboration et al. 2011b).

Further development of traditional filtering techniques includes
the ‘scale-adaptive filter’ (SAF; Sanz, Herranz & Martı́nez-
Gónzalez 2001; Herranz et al. 2002b), in which the physical scale
of the objects of interest is added as an extra degree of freedom and
an additional condition for optimality is added in the derivation of
the filter. Schäfer & Bartelmann (2007) generalized the SAF to the
spherical topologies and added multi-channel support.

A very popular member of the filter family is the wavelets group,
in particular the Mexican-hat (MexHat) wavelet family. Indeed, the
MexHat wavelet of the order of 1 is the MF or the SAF solution under
particular assumptions about the statistical properties of the back-
ground and the objects profile (Sanz et al. 2001). Since such condi-
tions hold very well in modern cosmological data sets, such as those
obtained from Wilkinson Microwave Anisotropy Probe (WMAP)
(Bennett et al. 2003) or Planck, and the simplicity of the function
allows easy and robust engineering, the MexHat wavelet family has
been the favourite detection tool of many authors (González-Nuevo
et al. 2006; López-Caniego et al. 2006). Nonetheless, obtaining
good characterization of the catalogues with the MexHat filter is
extremely dependent on the value of the acceptance/rejection thresh-
old. The only way to ensure optimal performance is to run the code
on realistic simulations and then assess the code’s yield against the
simulation’s input catalogue, but a large number of runs are needed
to fine-tune the threshold value. Exactly the same procedure must be
followed to determine the uncertainties on the parameter estimates.
This may not seem a severe limitation, since immense computing
resources are now cheaply available. Given the increased level of ac-
curacy and complexity of current cosmological data sets, however,
simulations must be rather sophisticated to provide a realistic test
bed, and so even the enormous computational resources available
are not sufficient to cope with the massive throughput demanded.
For example, a single realistic Planck simulation (FFP) takes about
one full week to run on a very large cluster and to have reasonable
estimates of the parameter uncertainties and detection thresholds,
at least several hundred independent simulations are needed.

To overcome these limitations of linear filtering methods,
Hobson & McLachlan (2003) introduced a detection algorithm
based on a Bayesian approach. As with the filtering techniques,
the method assumed a parametrized form for the objects of inter-

est, but the optimal values of these parameters, and their associated
uncertainties, were obtained in a single step by evaluating their full
posterior distribution. Another major advantage of this method is the
consistent inclusion of physical priors on the parameters defining
the objects and on the number of objects present, which improve the
detection efficiency. Although this approach represented a further
step in the direction of bringing a more solid statistical foundation
to the object detection/characterization problem, its implementa-
tion was conducted using a Monte Carlo Markov chain (MCMC)
algorithm to sample from a very complex posterior distribution
with variable dimensionality (dependent on the number of objects).
This technique therefore proved extremely computationally inten-
sive. Despite the considerable progress that has recently been made
towards increasing the efficiency of sampling-based Bayesian ob-
ject detection methods (Feroz & Hobson 2008), such algorithms
are still substantially slower than simple linear filtering methods.
In a recent work, Argüeso et al. (2011) suggested a semi-analytical
hybrid Bayesian maximum a posteriori (MAP) scheme to over-
come the complexity and the massive resources required for the
Hobson & McLachlan method. However, the method still relies on
the MF to find the sources’ positions, and this procedure is not
integrated within a fully Bayesian approach for calculating the ev-
idence. Meanwhile, Carvalho et al. (2009) and Feroz, Hobson &
Bridges (2009) have moved one step further towards the theoreti-
cally optimal Bayesian solution by exploring the use of evidence
ratio methods, which are the optimal decision-making tools (see
section 2.2), rather than simply adopting the MAP solution.

Our proposal here is to blend detection strategies, i.e. multi-
channel filtering, Bayesian posterior sampling and evidence ratio
evaluation, into a rigorous, hybrid, multi-model scheme (as op-
posed to traditional binary models). This novel methodology is
simultaneously general, formally and statistically firmly grounded,
and overcomes the computation inefficiencies of the pure sampling
methodologies.

The structure of this paper is as follows. In Section 2, we give
an overview of Laplace–Bayes probability theory and its close re-
lationship with decision theory (DT) as a consistent inference and
decision-making device. Our data model and the different con-
stituents of the Bayesian framework, namely the likelihood and
priors, are discussed in Section 3, and in Section 4 we bring to-
gether these elements and recommend an implementation strategy
based on the exploration of the properties and symmetries of the
posterior manifold. We also identify problems that may arise and
suggest effective ways of tackling them using the Bayesian formal-
ism. Finally we present our conclusions and directions for future
work in Section 6.

2 BAY ESI AN INFERENCE

2.1 Basic tools

The Bayesian system of inference is the only one that provides a
consistent extension of deductive logic({0 = false, 1 = true}) to a
broader class of ‘degrees-of-belief ’ by mapping them into the real
interval [0, 1] (Jaynes 2003, ch. 1,2). Combining the multiplication
rule together with the associativity and commutativity properties of
the logical product, one may write the equation which will give us
the posterior probability of a set of parameters (�) taking into ac-
count the data (d) and the underlining hypothesis (H). This equation
is also known as Bayes theorem

Pr(� | d, H ) = Pr(d | �, H ) Pr(� | H )

Pr(d | H )
, (1)
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where, for brevity, we denote Pr(� | d, H ) ≡ P (�) as the posterior
probability distribution of the parameters, Pr(d | �, H ) ≡ L(�) as
the likelihood, Pr(� | H ) ≡ π (�) as the prior and Pr(d | H ) ≡ Z
as the Bayesian evidence. The (unnormalized) posterior distribution
is the complete inference of the parameter values �, and thus plays
the central role in Bayesian parameter estimation.

The normalized posterior distribution may be easily obtained by
integrating over all possible values of the parameters and equating
the resulting expression to unity, and from this argument one can
easily see that the evidence is given by

Z ≡ Pr(d | H ) =
∫

L(�) π (�) dK�, (2)

where K is the dimensionality of the parameter space. Inspecting
this expression, one immediately recognizes that the evidence is the
expectation of the likelihood over the prior, and hence is central
to Bayesian model selection between different hypothesis Hi. We
note that the evidence evaluation requires the prior to be properly
normalized.

2.2 Decision theory

Probability theory defines only a state of knowledge: the posterior
probabilities. There is nothing in probability theory per se that
determines how to make decisions based on these probabilities.
Indeed, a range of actions are always possible, even when using
the same state of knowledge, because the cost of making a wrong
decision usually changes according to the kind of problem under
analysis. For example, in the case of object detection, one often
considers each type of error, i.e. an undetected object or a spurious
detection, as equally bad. For a moment, however, suppose we
instead wished to determine whether or not a certain person was
immune to a certain pathogen. Failing to detect a previously
acquired immunity would only cost the price of an extra vaccine,
but failing to determine that someone was not immune could
seriously put her/his life at risk. Thus, even with the same degree
of knowledge, the cost of choosing incorrectly is not the same in
every case. To deal with such difficulties, one must apply decision
theory, which we now summarize briefly.

To apply DT, one must first define the loss/cost function L(D, E)
for the problem at hand, where D is the set of possible decisions and
E is the set of true values of the entities one is attempting to infer.
In general, these entities can be either continuous parameters or
discrete hypotheses, and so DT can be applied equally well to both
parameter estimation and model selection. The loss function simply
maps the ‘mistakes’ in our estimations/selections, D, into positive
real values L(D, E), thereby defining the penalty one incurs when
making wrong judgments. The Bayesian approach to DT is simply
to minimize, with respect to D, the expected loss

〈L(D, E)〉 =
∫∫

L(D, E) Pr(D, E) dD dE. (3)

2.2.1 Parameter estimation

In the estimation of a set of continuous parameters,2 the ‘decisions’
D are the parameter estimates �̂ and the ‘entities’ E are the true

2 In astronomical object detection, the majority of the interesting parameters
(amplitude, position, geometry, etc.) are continuous and real valued. More-
over, discrete parameters can always be handled within the same framework
by resorting to delta Dirac functions.

values �∗ of the parameters. Typically, the loss function is taken to
be a function of the difference, or error, ε ≡ �̂ − �∗.

Some popular choices of loss functions are: (i) the square error
ε2; (ii) the absolute error |ε| and (iii) the uniform cost inside error
bar, i.e. unity if |ε| > � and zero if |ε| < �, where � is some
pre-defined small quantity. In each case, one can easily find the
optimal estimator by minimizing the expected loss (3) with respect
to �̂. The solutions are, respectively: (i) the posterior mean; (ii) the
posterior median and (iii) the posterior mode.3

The most popular choice of loss function among the astronomical
community is the square error ε2. When detecting astronomical
objects, however, the requirements are usually not those of the
square error function, which puts an extreme emphasis on values
very far from the true ones. This extreme sensitivity to the outliers
makes the posterior mean estimator less robust than, for example,
the posterior median, which is much more resilient to outliers. An
even better choice would be not to penalize the estimates at all if
they fall within a small neighbourhood � around the true parameter
values and prescribe a constant penalty otherwise. This is precisely
the ‘uniform cost inside error bar’ loss function described above.
This loss criterion closely matches what we would intuitively expect
when assessing the quality of a detection algorithm. For example,
if the estimated value of a source flux lies outside the allowed range
it does not matter how far it lies from the true value, since it will
always be counted as a spurious detection (Planck Collaboration
et al. 2011a).

2.2.2 Interval estimation

In addition to an estimate �̂, one typically summarizes the in-
ference implied by the full posterior distribution by quoting ei-
ther joint or marginalized confidence intervals (or, more precisely,
Bayesian credible intervals). One could, in principle, obtain an op-
timal interval by employing an appropriate loss function, but a
simpler approach is now widely accepted, namely the high prob-
ability density (HPD) interval. The HPD interval containing the
fraction (1 − α) of the total probability is defined such that:
Pr(� ∈ HPD | d, H ) = 1 − α and, if �1 ∈ HPD and �2 �∈ HPD,
then Pr(�1 | d,H ) ≥ Pr(�2 | d, H ).

The characterization of the HPD interval may be easily obtained
by sampling from the posterior distribution. When the posterior
distribution is known to be Gaussian or close to it, which is a very
common case, the ±rms interval is usually quoted instead.

2.2.3 Model selection and catalogue making

In model selection, the DT ‘entities’ E are the hypotheses under
consideration and the ‘decisions’ D are the chosen hypotheses,
such that L(Di, Hj) ≡ Lij is the loss associated with the decision
Di ≡ choose Hi, when Hj is true. Thus, inserting this form for the
loss matrix into the right-hand side of equation (3) and performing
the integration using the delta Dirac functions to represent discrete
values as infinite densities, the average loss reads

〈L(D, H)〉 =
∑

ij

Lij Pr(Di, Hj ). (4)

3 The posterior mean is the Bayesian optimal estimator under a very broad
class of reasonable loss functions. When the posterior distribution is Gaus-
sian all three common estimators match, and the posterior mode is often the
simplest to compute. Nonetheless, if the parameter space is, in practice, dis-
crete (e.g. pixelization), the posterior mean might provide a hyper-resolution
estimate (sub-pixel accuracy).

C© 2012 The Authors, MNRAS 427, 1384–1400
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



PowellSnakes II: multi-channel detection 1387

If, for example, one is interested in distinguishing between a null
hypothesis H0 and a given alternative hypothesis H1 from amongst
a wider collection, then typically the loss function has the form

Lij =

⎧⎪⎪⎨⎪⎪⎩
0 if i = j (no penalty if correct)
positive value if i = 1, j �= i (false positive)
positive value if j = 1, i �= j (false negative)
0 otherwise (alternative selection error).

(5)

Minimizing (4) is not a difficult task (Van Trees 2001), but the gen-
eral case above leads to long and cumbersome expressions that we
shall not explore now. This particular loss arrangement makes it pos-
sible to restate the problem as the ratio of the posterior probability
of a hypothesis, against its complement (Jaynes 2003, ch. 3),

ln

[
Pr(Hj | d)

Pr(H̃j | d)

]
Hj

≷
H̃j

ξ, (6)

where choosing H̃j means leaving the putative detection out of the
targeted catalogue and ξ ≡ ln Lspurious

Lmiss
is the ln ratio of the losses

when accepting a false positive (spurious) and when missing a
source (see Section 4.5). If the same loss matrix template applies
equally well to any source population, then by iterating through
all object hypotheses, using the above formula, we can ‘classify’
them, i.e. assign each individual source to a catalogue. In the case
an object appears in more than one catalogue, choose the one where
the left-hand side of (6) is larger.

Much simpler and enlightening, but still capable of a very broad
and interesting range of practical applications, is the binary case
consisting of just two hypotheses H0 and H1. In this case, the
decision criterion that minimizes the expected loss is

ln

[
Pr(H1 | d)

Pr(H0 | d)

]
H1

≷
H0

ξ (7)

where ξ ≡ ln L10
L01

. The ‘posterior odds’ ratio

Pr(H1 | d)

Pr(H0 | d)
= Z1

Z0

Pr(H1)

Pr(H0)
(8)

gives the posterior probabilities of the models given the data and
is a very commonly used quantity in the Bayesian model selection.
Indeed, Jaynes asserts that the best way to decide between two
models is by computing the posterior odds and compare it against
a threshold. Using DT we have recovered this result and, at the
same time, given it a precise statistical meaning and also defined a
threshold for decision making based on the loss criterion.

Unfortunately, in astronomy it is often not possible to assign
meaningful values to the loss. In particular, in object detection and
catalogue making, astronomers like instead to measure the quality
of a catalogue in terms of the expected/maximum contamination
(false positive rate) and the expected/minimum completeness (true
positive rate). There is, of course, a connection between this ap-
proach and DT, but quantifying it is not trivial. Nonetheless, there is
a very simple and powerful way to define the acceptance/rejection
threshold in the Bayesian catalogue making, based on the probabil-
ities of the different errors that might occur (i.e. spurious or missed
detections), but we shall postpone its discussion until Section 4.

Before moving on, it is worth mentioning that, if one ignores the
(often crucially important; (Riley, Hobson & Bence 2006, ch. 30,
p. 1132)) factor Pr(H1)/ Pr(H0) in (8), the remaining evidence ra-
tio Z1/Z0 depends only on the data and can thus be viewed as an
orthodox statistic. As such, the properties of its sampling distribu-
tion can be investigated using standard frequentist tools, such as the

‘power’ (true positive rate) Pr(D1 | H1) and the ‘type I error rate’
(false positive rate) Pr(D1 | H0) (Jenkins & Peacock 2011). Such
analyses overlook, however, that the evidence ratio is the optimal
decision rule. The only degree of freedom remaining is the choice
of a threshold, which determines whether it is preferable to have
fewer (more) detections at the cost of good (poor) rejection; there
is no way of decreasing both error rates simultaneously because
the evidence ratio is already the most discriminating statistic. The
claim by Jenkins & Peacock (2011) that the evidence ratio test is
not ‘powerful’ results from them fixing the threshold in an arbitrary
way; it is this threshold that controls the balance between different
error rates, and not the statistic itself. A better way of measuring the
quality of a binary classifier based on some statistic is to allow the
threshold to vary and plot the resulting true positive rate against the
false positive rate. This produces the receiver operating character-
istic (ROC) curve of the classifier. A common measure of classifier
quality is the Area Under the ROC-Curve (the AUC statistic), which
obviously does not rely on choosing a single threshold. One may
show that the AUC is equal to the probability that the classifier will
rank a randomly chosen data set generated from H1 higher than a
randomly chosen data set generated from H0.

3 BAY E S I A N O B J E C T D E T E C T I O N

3.1 Data model

The specification of the PowellSnakes (PwS) statistical model for
a single-frequency observation of localized objects embedded in a
background is given in Carvalho et al. (2009). This can be straight-
forwardly extended to accommodate multi-frequency observations.
At each observing frequency ν, PwS treats the observed data dν(x),
where x is the position vector in pixel space, as the superposition of
a ‘generalized’ noise background n′

ν(x) = bν(x)+nν(x), consisting
of background sky emission [bν(x)] and instrumental noise [nν(x)],
plus a characteristic signal [sν(x)] coming from the sources. For
ease of notation, we will collect the fields at different frequencies
into vectors. Moreover, the signal and background components in
each frequency channel are assumed to have been smoothed with
a known beam, which may differ between channels. The resulting
model for the data vector d(x) reads

d(x) =
Ns∑

j=1

sj (x; �j ) + b(x) + n(x), (9)

where Ns is the number of sources, sj (x; �j ) is the signal vector
due to the jth source, which depends on the parameter vector �j

characterizing the object, b(x) is the signal vector due to the diffuse
astronomical backgrounds and n(x) is the instrumental noise vector.
The astronomical backgrounds denoted by b(x) are expected to
exhibit strong correlations between different frequency channels,
whereas the instrumental noise n(x) is expected to be uncorrelated
between frequency channels, and also between pixels in the case of
simple white noise.4

We write the signal vector due to the jth source in (9) as

sj (x; �j ) = Aj f (φj )τ (x − Xj ; aj ), (10)

4 The condition of the instrumental noise being white is not necessary. The
general case of correlated noise between pixels does not complicate the
mathematical development, but can increase computational expense. In any
case, the assumption of white noise applies extremely well to Planck data
on the small scales of interest used for the identification of localized objects.
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where the vector τ (x − Xj ; aj ) denotes the convolved spatial tem-
plate at each frequency of a source centred at the position Xj and
characterized by the shape parameter vector aj , the vector f con-
tains the emission coefficients at each frequency, which depend
on the emission law parameter vector φj of the source (see be-
low), and Aj is an overall amplitude for the source at some chosen
reference frequency. Thus, the parameters to be determined for
the jth source are its overall amplitude, position, shape parame-
ters and emission law parameters, which we denote collectively by
�j = {Aj , Xj , aj , φj }. The totality of these parameters, for all
the sources present, plus the number of sources Ns, is concatenated
into the single parameter vector �. For convenience, we denote the
signal vector generated by all the sources by

s(x; �) ≡
Ns∑

j=1

sj (x; �j ). (11)

The nature of the emission law parameter vector φ depends on
the class of object under consideration. PwS analyses the data as-
suming that all the objects belong to a single class, and repeats the
analysis for each class of interest. The assignment of individual
sources to a particular class is then performed via a model selec-
tion step (see Section 4.5). The number and specification of classes
can be arbitrary, including, for example, SZ clusters, point sources,
Galactic objects, etc. Previous multi-frequency versions of PwS
have been limited to the case where all objects share the same, fixed
emission law. SZ clusters fall exactly in this category as, ignoring
the relativistic corrections, they all follow exactly the same spectral
signature (Birkinshaw 1999), which does not depend on any param-
eters. For extragalactic point sources, however, the emission law is
phenomenological and can vary between sources. Consequently,
PwSII has been extended to accommodate such cases. For example,
two important families of extragalactic point sources in Planck data
are as follows.

(i) Radio sources are the dominant family of point sources for all
Planck channels up to and including 217 GHz. Based on the work
of Waldram et al. (2007) and Planck Collaboration et al. (2011c),
we assume an emission law for such objects of the form

ln fν = α ln

(
ν

ν0

)
+ β

[
ln

(
ν

ν0

)]2

, (12)

where φ = {α, β} are spectral parameters that can vary between
sources, and ν0 is the reference frequency (note that f ν = 1 at
ν = ν0). Setting β = 0 recovers the commonly assumed power-
law spectral behaviour with spectral index α. The more general
form (12) accommodates most of the common types of radio-source
spectra, namely: flat, steep and inverted.

(ii) Dusty galaxies dominate the Planck highest frequency chan-
nels, starting at 217 GHz up to 857 GHz. Their spectral behaviour
may be represented to very good accuracy using the well-known
greybody model

ln fν = β ln

(
ν

ν0

)
+ ln

[
Bν(T )

Bν0 (T )

]
, (13)

where the spectral parameters φ = {β, T } are the dust emissivity
and temperature, respectively, Bν(T) is the Planck law of blackbody
radiation and ν0 is once again the reference frequency (Serjeant &
Harrison 2005). We have again normalized (13) such that f ν = 1 at
ν = ν0.

(iii) New/unexpected sources can be easily accommodated inside
the current framework by allowing the emission coefficient fνi

at
each frequency to be a free parameter f = [fν1 , . . . , fνn ]t . Such a

spectral energy distribution (SED) model is certainly more generally
applicable because it contains the other two models. This ‘generic’
model may be used with great advantage to prevent data artefacts
being mistaken for a genuine source, although it may be disfavoured
by the evidence because of its larger number of parameters (see
Section 4.5).

3.2 Likelihood

The form of the likelihood is determined by the statistical properties
of the generalized noise (background sky emission plus instrumen-
tal noise) in each frequency channel. As in PwSI, we will perform
our analysis in sufficiently small patches of sky such that it is not un-
reasonable to assume statistical homogeneity. In this case, it is more
convenient to work in Fourier space, since there are no correlations
between the Fourier modes of the generalized noise, which leads to
considerable savings in computation and storage. Moreover, we will
assume that both the background emission and instrumental noise
are Gaussian random fields. This is a very accurate assumption for
instrumental noise and the primordial CMB, but more questionable
for Galactic emission.

We are, in fact, interested only in the likelihood ratio between
the hypothesis Hs that objects (of a given source type s) are present
and the null hypothesis H0 that there are no such objects. The latter
corresponds to setting the sources signal s(x; �) to zero. Under our
combined assumptions, the log-likelihood ratio has the form

ln

[LHs (�)

LH0 (�)

]
=
∑

η

d̃
t
(η)N −1(η)̃s(η; �)

− 1

2

∑
η

s̃t (η; �)N −1(η)̃s(η; �), (14)

where the tilde denotes a Fourier transform, the usual mode
wavenumber k = 2πη, and the matrix N (η) contains the gen-
eralized noise cross-power spectra.

From (10) and (11), the Fourier transform of the signal due to all
the sources may be written as

s̃(η; �) = B̃(η)
Ns∑

j=1

Aj f (φj )τ̃ (−η; aj )ei2πη·Xj , (15)

where the vector B̃(η) contains the Fourier transform of the beam at
each frequency and τ̃ (η; a) is the Fourier transform of the template
for an unconvolved object at the origin, characterized by the shape
parameters a.

Substituting (15) into (14) and rearranging, one obtains the fi-
nal form for the likelihood ratio, which we will use throughout,
namely

ln

[LHs (�)

LH0 (�)

]

=
Ns∑
j

{
AjF−1

[Pj (η)τ̃ (−η; aj )
]

Xj

− 1

2
A2

j

∑
η

Qjj (η) | τ̃ (η; aj ) | 2

}

−
Ns∑
i>j

{
AiAjF−1

[Qij (η)τ̃ (η; ai)τ̃ (−η; aj )
]

X i−Xj

}
, (16)

where F−1[. . .]x denotes the inverse Fourier transform of the
quantity in brackets, evaluated at the point x, and we have
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defined the quantities Pj (η) ≡ d̃
t
(η)N −1(η)ψ(η) and Qij (η) ≡

ψ̃
t

i(η)N −1(η)ψ j (η), in which the vector ψi(η) has the components

(ψ i)ν = B̃ν(η)( f i)ν , with ν labelling frequency channels.
We have written the likelihood ratio in this way since it combines

multi-channel data into a single equivalent channel. Moreover, it
highlights the importance of the final ‘cross-term’ on the right-hand
side of (16). Let us assume for a moment that this cross-term is
negligible. In this case, the parameters of each source enter the
likelihood independently. This parameter independence allows us
to perform our analysis one source at a time and forms the basis of
the ‘single source model’ discussed in Section 4.1, which greatly
simplifies the source detection problem. The physical meaning of
the neglected cross-term is most easily understood by considering
the simple, but important, example of point sources, for which
τ (x, a) = δ(x). In this case, the cross-term in (16) becomes∑
i>j

AiAjF−1[Qij (η)]X i−Xj
. (17)

A sufficient condition for this expression being small is that all the
sources are sufficiently well-separated that F−1[Qij (η)]x is close
to zero for such distances. For simple, uncorrelated backgrounds,
Qij (η) contains just linear combinations of the instrument beams
in each frequency channel. Thus, the condition that (17) is small is
just a generalization of the common assumption in astronomy that
objects are well separated, or that object blending effects are negli-
gible.5 When detecting point sources, and assuming the blending is
not severe, an efficient implementation of the full deblending term
is possible, but this will be addressed in a forthcoming publication.

It is worth noting that maximizing the likelihood ratio (16), in the
absence of the cross-term (17), with respect to the source amplitudes
Aj, gives

Âj =
F−1
[Pj (η)τ̃ (−η; âk)

]
X̂j∑

η Qjj (η) | τ̃ (η; âj ) | 2
, (18)

which recovers the expression for the MMF (Herranz et al. 2002a).
Thus, we see that the filtered field is merely the projection of the like-
lihood manifold on to the sub-space of position parameters Xj . This
identification further allows one straightforwardly to estimate the
uncertainties on all the MMF parameter estimates simultaneously
by calculating and inverting the Hessian matrix of the likelihood at
its peak(s). This should be contrasted with traditional approaches to
MMF in which the uncertainty on the estimated source flux is cal-
culated assuming the values of all other parameters are fixed (Melin
et al. 2006).

Moreover, substituting the maximum-likelihood (ML) estimate
(18) into expression (16) for the likelihood ratio, one obtains for the
jth object

max

[
ln

(LHs

LH0

)]
= 1

2

∑
η

Qjj (η) | τ̃ (η; âj ) | 2Â2
j = 1

2
ŜNR

2

j

(19)

where ŜNRj is the SNR (at the peak) of the jth source, and the rms
σ of the noise satisfies

1

σ 2
=
∑

η

Qjj (η) | τ̃ (η; âj ) | 2. (20)

5 When the background is uncorrelated, this condition is immediately ful-
filled if each pixel contains signal coming from one and only one source.
However, this is not the case when there are strong correlations in the back-
ground as in the case of Planck.

Thus, one sees that in the traditional approach to catalogue making,
in which one compares the maximum SNR of the putative detections
to some threshold, one is really performing a generalized likelihood
ratio test.

3.3 Priors

If the data model provides a good description of the observed data
and the SNR is high, then the likelihood will be very strongly peaked
around the true parameter values and the prior will have little or no
influence on the posterior distribution. At the faint end of the source
population, when we are getting close to the instrument sensitiv-
ity limit, however, priors will inevitably play an important role.
Moreover, since for most cases in astronomy the faint tail over-
whelmingly dominates the population, the selection of the priors
becomes important and has to be addressed very carefully.

PwSII separates the tasks of source detection (deciding whether a
certain signal is due to a source) and source estimation (determining
the parameters of the source). This separation has the advantage of
allowing the use of different sets of priors at each stage. Typically,
we first perform the source detection step using ‘informative’ priors,
which encompass all the available information, since they provide
the optimal selection criterion and the optimal estimators. After the
set of detections has been decided, PwS proceeds to the estimation
pass, in which ‘non-informative’ priors may be used instead.

Non-informative priors are constructed such that the MAP esti-
mator of any quantity should depend exclusively on the data.6 One
way of expressing this condition is that, when changing the data, the
likelihood shape remains unchanged and only its location in the pa-
rameter space changes (Box & Tiao 1992). Thus, the idea is to find
an appropriate re-parametrization of the likelihood that transforms
the parameters into location parameters, for which the ignorance
prior is locally uniform (locally, in this sense, means the parameter
range where the mass of the likelihood is concentrated). One then
performs the inverse parametrization transformation on the uniform
prior to obtain the appropriate prior in the original parametrization.
Finding such a transformation can, however, be very difficult for a
general multi-dimensional prior.

Nonetheless, in a large majority of applications, the parameters
may be assumed independent, so that the prior factorizes

π (θ1, θ2 . . . , θn) = π1(θ1)π2(θ2) · · · πn(θn). (21)

For one-dimensional distributions, Jeffreys devised a general way to
derive the non-informative prior on a parameter based on invariance
properties of the likelihood under a change of variable. The Jeffreys
rule for constructing ignorance priors for the one-dimensional case
reads

π (θ ) ∝ J 1/2(θ ), (22)

where

J (θ ) ≡ −
〈

∂2 lnL(θ )

∂θ2

〉
(23)

is the Fisher information. We will adopt this approach and now
consider the prior on each parameter of interest.

6 These priors usually need not be properly normalized, since one wishes
only to locate the maximum of the posterior distribution and the normaliza-
tion does not depend on any parameters.
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3.3.1 Prior on positions

It is obvious that the distribution of sources is not uniform across
the sky. The Galactic regions (Milky Way and Magellanic Clouds)
have a much higher density of detectable sources than the rest of
the sky. Moreover, assuming extragalactic sources to be uniformly
distributed across the sky (no clustering) is not sufficient to ensure
that the distribution of detectable sources is uniform, since the
background/noise is itself inhomogeneous over the sky.

Nonetheless, PwS divides the sky into small patches and, in each
such region, the assumptions of background homogeneity and a
uniform source distribution are reasonable. Moreover, if the sky
patches used are sufficiently small, our locally uniform model can
easily cope with clustering when the gradient of the density of
sources is small across the patch boundaries. The correctly normal-
ized positions prior for the complete ensemble of sources in a patch
is simply

Pr
(

X Ns | Ns, Npix

) = 1

Npix
Ns

, (24)

where Npix is the number of pixels in each patch and Ns is the
number of sources in that patch.7

3.3.2 Prior on the number of sources

Following the same rationale of local uniformity, i.e. no clustering,
the probability of finding Ns objects (above a given flux limit) in a
sky patch follows a Poisson distribution

π (Ns) = Pr(Ns | λ) = e−λ λNs

Ns!
, (25)

where λ is the expected number of such objects in that region.
Moreover, λ should be proportional to the region size λ=�sNpix�p,
where �s is the number of sources per pixel and �p is the pixel area.
Note that �s may change across the sky as we are only enforcing
the uniformity locally within each patch.

3.3.3 Prior on flux

A good flux estimator should be unbiased, but this goal is often
problematic. The optimal estimators in the sense of DT, i.e. those
that minimize the expected loss/cost, are most often biased and they
combine the data with external information from ancillary data sets.
PwSII thus includes two different sets of flux priors with distinct
goals.

(i) Non-informative. Our data model depends linearly on the
source fluxes Aj and is a particular case of the general linear model
(Box & Tiao 1992). Considering only a single source for simplicity
(the solution for multiple sources is a mere repetition of this simpler
case.), one may show that the likelihood can be written in a form
that makes it clear that the flux is in fact a location parameter:

LHs (Aj ) ∝ exp

[
−
∑

η Qjj (η) | τ̃ (η; âi) | 2

2
(Aj − Âj )2

]
, (26)

where Âj is the MMF estimate of the flux (18). The same result
could have been obtained directly using formula (22). Thus, the
prior on the flux must be locally uniform:

π (Aj ) ∝ c, (27)

7 The patch is just the atom of a more general region of statistical homo-
geneity, the ‘homogeneous zone’ (see Section 4.1).

where j indexes the source. For a more general and rigorous treat-
ment, see Box & Tiao (1992).

(ii) Informative. Owing to the different statistical properties of
point sources and SZ galaxy clusters, a different prior applies in
each case. For point sources, we adopt the flux prior first suggested
by Argüeso et al. (2011),

π (Aj ) = Pr(Aj | A0 p γ ) ∝
[

1 +
(

Aj

A0

)p]− γ
p

, (28)

where A0 is the ‘knee’ flux, p is some positive number and γ is the
exponent controlling the shape of the power law for fluxes much
larger than the ‘knee’. This provides a good model for the observed
distribution of fluxes, fitting the de Zotti model almost perfectly
(de Zotti et al. 2005). Moreover, the distribution can be properly
normalized as required for evidence evaluation. PwS truncates the
distribution faint tail and re-normalizes the remaining range as a
result of the early selection effect (see Section 3.3.6), a practice the
proponents of the distribution also followed. For galaxy clusters,
the derivation of the prior follows a different approach. The Planck
Sky Model (PSM v1.6) (Delabrouille et al. 2012) was used to draw
realistic simulations of the cluster populations assuming a standard
WMAP best-fitting �cold dark matter cosmology (Hinshaw et al.
2009) and the Jenkins mass function (Jenkins et al. 2001). We found
that the fluxes in the sample cluster catalogues were quite well fitted
by a power law:

π (Aj ) ∝ A
−γ
j . (29)

To deal with the early selection threshold and to provide a properly
normalized distribution, once again a minimum and, this time, a
maximum flux also were assumed.

3.3.4 Prior on size

(i) Point sources. Point sources are best modelled by imposing the
prior π (r) = δ(r) on the ‘radius’. This condition might, however, be
too restrictive, since to simplify the implementation of the code and
to make it faster, PwS assumes the instrument beams are circularly
symmetric, which is only an approximation to the true beam shapes.
Thus, even for point sources, allowing the source radius to vary over
a small range of values allows a better fit between the template and
the pixel intensities and consequently a higher likelihood ratio/SNR
value. Thus, in both the informative and non-informative cases, our
preferred radius prior for point sources is

π (rj ) =
{

1/� rj ≤ �

0 rj > �
, (30)

where �  FWHM (the full width half-maximum of the beam).
(ii) Galaxy clusters. Turning to galaxy clusters, a significant frac-

tion of the clusters Planck will detect will be unresolved, and thus
appear as point sources with a distinctive spectral signature. In many
cases, however, galaxy clusters are large enough to be mapped as
extended objects and a parameter controlling the scale of the cluster
profile, the radius, needs to be included. The informative prior on
the radius was derived using the same procedure as in Section 3.3.3
and an exponential law

π (rj ) ∝ exp
(
− rj

�

)
(31)

was found to fit the simulated catalogues very well. We truncate the
distribution outside a minimum and maximum radius.

The non-informative prior follows a different law from that ex-
pected from the cosmological models. Our model for an individual
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source is the convolution of the source profile with the beam PSF.
The radius parameter r ′

s that scales the resulting shape is a ‘hy-
brid’ parameter, as it shifts and scales the likelihood at the same
time (Jaynes 2003, ch. 12). After applying the Jeffreys rule, the
non-informative prior on r ′

s reads

π (r ′
s) ∝ 1

r ′2
s

. (32)

Assuming that either the profile or the beam has centroids at the
origin and the profile is a scaling profile τ (r/rs) then

r ′
s =
√

B2 + κ2 r2, (33)

where B2 is a constant known as the function variance of the beam
(Bracewell 1965) and κ2 is another dimensionless constant, the
variance of the dimensionless variable r/rs over the profile. The
non-informative prior for the radius parameter then reads:

π (r) ∝ r(B2 + r2
) 3

2

, (34)

where B = B/κ . For the general case B2, the variance of the beam,
should be replaced by the variance of

√Pj (η). For unresolved
objects, narrow clusters with radii smaller than the beam size, the
prior grows linearly with r. For well resolved objects, r � B, the
prior decreases proportionally to r−2.

3.3.5 Prior on spectral parameters

There is an extensive literature on the distribution laws of radio-
source spectral indexes: de Zotti et al. (2010) (Planck Collabora-
tion et al. 2011c,d). In general, Gaussian distributions, or Gaussian
mixtures with two modes, fit the available data reasonably well.
However, the most interesting sources are exactly those that do not
follow the canonical laws of emission. To avoid narrowing the range
of possible alternatives too much, uniform priors are probably better
choices unless we choose to target a very specific family. The same
holds for dusty galaxies.

By applying our standard procedure, the non-informative prior
on the spectral parameters reads

π (αj ) ∝
√√√√∑

ν

(
∂Sν(φ)

∂αj

)2

, (35)

where Sν(αj) is the SED of the source as a function of the parameters
and the sum extends over all frequency channels.

3.3.6 Prior on the models

The prior ratio Pr(H1)/ Pr(H0) on the models is often neglected
(i.e. assumed to equal unity), but plays a very important role in
the PwS detection criterion. To give a proper account of its nature,
let us imagine the simplest possible detection problem, where we
know in advance all the true values of the parameters that define an
object, which translates into delta-function priors. Substituting this
condition into (7) and making use of (19), we obtain the following
inequality:

SNR
H1

≷
H0

√
2

[
ξ + ln

(
Pr(H0)

Pr(H1)

)]
. (36)

One may interpret the term ln( Pr(H0)
Pr(H1) ) as an extra ‘barrier’ added to

the detection threshold because we are expecting more fake objects
than the objects of interest, due to background fluctuations.

We saw earlier that, when an object is present, a local maxi-
mum in the likelihood is always present in the position parameter
sub-space. This condition immediately implies that only likelihood
maxima need be analysed. Nonetheless, one expects other likeli-
hood maxima to occur as a result of background fluctuation ‘con-
spiracies’. Assuming Poisson statistics for the number of sources
and the number of likelihood maxima resulting from the background
fluctuations, then the ratio of the probabilities is given by

Pr(H1 | Ns)

Pr(H0 | Ns)
=
(

λ1

λ0

)Ns

, (37)

where λ0 is the expected number of maxima per unit area resulting
from background fluctuations above the minimum limit of detection
of the experiment, and λ1 the expected number density of sources
above the same limit.

If only background is present, the density of maxima, λ0, resulting
from the filtering procedure that creates the likelihood manifold can
be estimated using the 2D Rice formula:

nb(ν, κ, ε) = 8
√

3ñb

π
√

1 − ρ2
ε(κ2 − 4ε2) e

− 1
2 ν2−4ε2− (κ−ρν)2

2(1−ρ2) , (38)

where ν ≡ A/σ is the ‘normalized peak amplitude’, κ the ‘normal-
ized curvature’, ε the ‘normalized shear’, and ρ = σ 2

1 /(σ0σ2), with
σ 2

n = (2π)1+2n
∫ ∞

0 η1+2n |P(η) | 2 dη (Lopez-Caniego et al. 2005).
Marginalizing over all parameters we obtain the expected density
of maxima of a Gaussian filtered field, which reads

ñb = σ 2
2

8π
√

3σ 2
1

. (39)

One is not interested, however, in all peaks, but only in those
above a certain level ν0, since PwS pre-selects the putative detec-
tions by imposing a minimum SNR level before attempting the
evidence evaluation. The main reason for adopting this early selec-
tion is computational efficiency. The SNR alone provides a good
proxy (see formula 19) for deciding whether a candidate peak is
the result of the presence of a source or just a background fluctua-
tion. Moreover, low SNR peaks tend to be ‘badly shaped’, making
the sampler very inefficient and resulting in a very large fraction
of the samples being rejected. To make the things even worse,
in most cases, these peaks themselves end up being rejected as
objects.

The applied flux cut must be taken into consideration to evaluate
the correct expected number counts, which define the prior Pr(H1)
as well. Thus, λ0 will read:

λ0 =
∫ ∞

ν0

nb(ν)dν, (40)

where nb(ν) is given by

nb(ν) = ñb

√
6

2
√

πρ1

{(
1 + erf

(
ρ

ρ1ρ2
ν
))

e
−ν2
(

1
2 +
(

ρ
ρ2

)2
) (

ρ
ρ2

)
+
(

1 + erf

(
ρ

ρ1
ν

))
e− ν2

2 (ν2 − 1)ρ2ρ1

+ νe
−ν2
(

1
2 +
(

ρ
ρ1

)2
)

√
π

ρρ2
1

⎫⎪⎬⎪⎭ , (41)

where ρ1 =
√

2(1 − ρ2) and ρ2 =
√

2( 3
2 − ρ2). The expected

number count of targeted objects above a certain flux threshold S,
λ1 ≡ 〈N(>S)〉, may be easily derived from their differential counts.
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Now a distinction must be made because the dominant type of
extragalactic point sources in Planck maps are galaxies which, in
principle, do not follow the same statistics as the galaxy clusters.
From general cosmological assumptions it is possible to derive that
the expected differential counts for a certain population type of
galaxies per flux interval at a certain frequency always follow a
power law: dNφ /dS = Aφ S−b (de Zotti et al. 2005). For clusters of
galaxies, however, one must instead use a realistic set of simulations,
such as the ‘Planck Sky Model’ (PSM v1.6) (Delabrouille et al.
2012). Using a properly normalized mass function (Jenkins et al.
2001), one finds that a power law also fits quite well the expect
number counts of clusters above a certain threshold. So, in either
case, point sources or clusters, λ1 may be written as

λ1 = N (>S0) =
∫ ∞

S0

dNφ

dS
dS = Aφ (1 − b)−1 S1−b

0 , b �= 1, (42)

where we keep the parameters {Aφ , b} free. These parameters are
usually provided by the user to target a specific type of object and/or
instrumental setup.

4 O B J E C T D E T E C T I O N S T R AT E G Y

So far, we have only developed the logic and probabilistic under-
pinnings of PwS. It is now time to bring all the pieces together into a
consistent strategy for the detection and characterization of discrete
objects. Our aim is to construct a robust, controlled and predictable
algorithm. Some caveats will be identified and solutions suggested,
always justified within the framework presented above.

4.1 The single object approach

Let us return to formula (7). At a first look, the evaluation of (7)
seems quite a daunting task. In order to apply the full Bayesian
approach, many complex integrals, over a very high dimensional
volume (at least 4 × Ns), need to be evaluated.8 Clearly a brute
force method is not efficient and perhaps not possible, even with
the massive computing resources generally available.

To find an effective solution, we begin by making two impor-
tant assumptions: (i) the objects of interest are ‘well separated’, so
that (17) holds; and (ii) all variables pertaining to each individual
source are mutually independent, which has already been implicitly
assumed throughout the exposition of our inferencial infrastructure.

These conditions allow us to separate the integrals associated
with each source. This is a very important simplification because
it is now possible to deal with each source independently, one at a
time. This is the ‘single object approach’ (Hobson & McLachlan
2003) and replaces a single Nparam × Ns-dimensional integral with
a sequence of Ns integrals, each of dimension Nparam.

The complete likelihood expression may now be replaced by the
much simpler ‘single source’ form. However, we should exercise
some care in defining the limits of integration in position space,
since no significant likelihood mass can be shared among position
integration domains. Apparently, this requirement creates such a
wealth of complexity to the integral evaluation that the single source
approach might at first be considered a poor choice. Fortunately, the
method PwS uses to evaluate the evidence integrals automatically
enforces this rule if the fields are not too crowded (see section 4.2).

8 Even when working with one small patch at a time, Ns is seldom smaller
than 4.

Under our assumptions, the odds of the model H1 (for a given
source type), given Ns such sources, reads

Pr(H1 | d, Ns)

Pr(H0 | d, Ns)
= (Npix�p)−Ns e−λ1

λ
Ns
1

Ns!

(
λ1

λ0

)Ns Ns∏
j=1

Z1j , (43)

where we have defined the ‘partial evidence’ for each individual
source as

Z1j ≡
∫ L1(�j )

L0
π (�j ) d�j . (44)

Taking logarithms and rearranging, one finds

ln

[
Pr(H1 | d, Ns)

Pr(H0 | d, Ns)

]
=

Ns∑
j=1

ln(Z1j ) − NsPs, (45)

where we have defined the ‘penalty per source’ Ps as

Ps ≡ ln �−1
s + ln

(
λ0

λ1

)
+ 1

Ns
[λ1 + ln Ns!] . (46)

Thus, the total ln (odds) for a single patch is the sum of the par-
tial ln (evidence) for each source, plus an extra global penalty term
that contributes, in the majority of the cases, negatively to the final
balance and does not depend on any particular source, but exclu-
sively on the ensemble properties. Let us further define a new entity
which will soon prove very helpful, the ‘homogeneous zone’. A
homogenous zone is an arbitrary ensemble of patches across which
all statistical properties of the data and the object models may be
assumed approximately invariant. The homogeneous zones should
be appropriately sized to keep the expected number of sources (λ)
on each mostly invariant.9 The most robust source catalogue is that
which maximizes the ln (odds) in (45), but we do not know the
value Ns. Moreover, we have not yet addressed how many or which
candidate detections will be finally selected for inclusion in the
catalogue. Nonetheless, expression (45) is a sum, so its maximum
value is reached when only the positive terms are included. Thus,
one possible procedure to select the optimal set of sources is as
follows:

(i) evaluate Zj for each source;
(ii) partition the candidate detections into the pre-defined ho-

mogenous zones. For each zone:
(a) sort the candidate detections in descending order of Z and

number them (j = 1. . .);
(b) with Ns, iterate down the list of catalogue lines evaluating

formula (45);
(c) stop when moving from Ns = k to its successor (Ns = k +

1) makes expression (45) decrease.
(d) This means, N̂s (the value of Ns that maximizes the evi-

dence ratio) has been found and the ‘proto-catalogue’ is formed
from the first k lines.

This quantity, the ln(odds) for each object

ln(odds)j ≡ ln

[
Pr(H1 | d)

Pr(H0 | d)

]
j

= ln(Z1j ) − P̂s, (47)

(P̂s is the penalty per source evaluated at N̂s or the catalogue penalty
per source), has a pivotal role in catalogue making (see Section 4.6).

We are not finished yet, however, because we have only selected
the set of detections that maximizes the odds. Other constraints

9 Denser regions should be made smaller than sparsely populated ones. An
homogeneous zone may contain from one single patch (the ‘area atom’) to
the full set.
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may yet apply. For instance, we may impose a threshold per line
different from zero as a result of the loss criteria or, as we shall see,
a prescribed contamination for the catalogue.

4.2 Evaluation of the odds ratio

Even using the simplified form of the likelihood assumed in the
single-object approach, a ‘brute force’ evaluation of the resulting
evidence integrals is still not feasible. One must instead use a Monte
Carlo approach to the numerical integration. Evidence integrals are
usually evaluated using MCMC methods and thermodynamic inte-
gration. Such methods can fail, however, when the posterior distri-
bution is very complex, possessing multiple narrow modes10 that are
widely separated. We therefore instead use ‘nested sampling’ (Sivia
& Skiling 2006), which is much more efficient, although not without
its difficulties. Feroz et al. (2009) have developed a very efficient
implementation of the nested sampling algorithm, called ‘Multi-
Nest’, which is capable of exploring high-dimensional multi-modal
posteriors. Nonetheless, MultiNest is designed to be a general sam-
pling and evidence evaluation tool and it is not particularly tuned
for Planck.

In the interest of speed, PwS instead tries to take full advantage of
the properties of the astronomical data sets. As already stated (see
Section 3.3), if our model explains the data well then the likelihood
should peak steeply around the parameter true values, decay very
rapidly to zero and have most of its mass concentrated around the
maxima vicinities. Thus, if one can first find the likelihood maxima,
then one does not need a sophisticated multi-modal sampling algo-
rithm like MultiNest. A much simpler nested sampling scheme such
as that mentioned in Mukherjee, Parkinson & Liddle (2006) would
perform equally well. Moreover, reasonably high SNR11 maxima
develop ‘well-shaped’ peaks, in the sense they are close to Gaus-
sian, rendering the sampling highly efficient. Two other significant
advantages are: (i) we can reduce our data set to a small neighbour-
hood enclosing the maxima, so that only a very small number of
pixels close to the maxima contribute appreciably to the evidence
value; and (ii) a much reduced parameter volume allows the same
number of ‘live points’ to deliver a considerably higher accuracy
on the evidence value, since they do not split among the several
posterior peaks. This is the approach adopted in PwS, which we
now outline in more detail.

4.2.1 Locating the likelihood maxima

Our first goal is to find the likelihood maxima. For illustration, let us
focus on the example of galaxy clusters, each of which is described
by four parameters: {X, Y , S, R}. An efficient four-dimensional min-
imizer implementation is straightforward and immediately available
(Press, Teukolsky & Vetterling 2007). However, our manifold has
many maxima and we need to check all of them, otherwise we might
lose some sources.

One possibility would be to follow the approach used in PwS I,
where the Brent line minimizer was ’enhanced’ with an ancillary
step to allow it to ‘tunnel’ from one minimum to the next one using
a scheme closely related with the equivalent quantum mechanical
effect. To increase the effectiveness of the procedure, PwS I started
a Powell minimization chain (hence the name ‘PowellSnakes’) in

10 At least one central maximum per source plus other secondary maxima
around the central higher peaks (Carvalho et al. 2009).
11 SNR � 4.2.

many different locations of the manifold in an attempt to find all
the maxima. It should be remembered, however, that the likelihood
only exhibits multiple maxima in the position sub-space; the other
sub-spaces are ‘well behaved’. Moreover, the likelihood in the po-
sition sub-space is merely the MMF filtered field. We therefore
instead use a brute force peak finding algorithm that scans all pixels
in this sub-space, which is very easy to implement and almost in-
stantaneous. Then, after collecting a list of peak positions, we start
a four-dimensional PwS optimization at each such location to find
the ML parameters for that particular peak.

Subtlety does arise in this approach, however, since to obtain the
MMF filtered field, one needs to assume a size R for the objects to
define the filter. Since we expect different clusters to have different
radii, we might lose some peaks because of the mismatch between
the true value of the cluster radius and that used in the filtering
template. A simple solution would be that suggested by the MMF
authors: apply the filter repeatedly using a different radius each
time. Although practical, this is, however, not the most efficient ap-
proach. Fortunately, if the instrument beams and the sources possess
reflection symmetries in both axes, then one can show that the Fisher
matrix at each likelihood peak is block-diagonal [assuming the like-
lihood (16) and using the single-source approach assumption (17)],
such that there is no correlation between the position sub-space and
the other parameters (flux and size) of the cluster. This has two im-
portant consequences: (i) regardless of the radius used to construct
the filter, a likelihood peak will always be present at the location
source and its position will not change positions as the filter scale
varies; (ii) we do not need to perform a full four-dimensional max-
imization but can (at least) separate the position variables from all
others, which brings a tremendous simplification to the problem of
finding the likelihood maxima. Thus, we can indeed start by finding
the maxima in the position sub-space using a brute force ‘check-
all-pixels’ approach and then, after pinpointing the position of the
source, search the remaining sub-spaces associated with the other
variables.

A couple of final comments on this approach are worth making.
First, it is well known that MFs are excellent at finding and locating
sources, but not as good at estimating fluxes. If the beam shape/size
is not completely known but symmetric, even when building up a
filter with the wrong beam geometry, the filter will correctly re-
cover the positions of the objects. In general, however, the element
in the Fisher matrix corresponding to the correlation between the
radius and the flux of an object is non-zero. Therefore, if the filter
is assembled using wrong beam parameters, bias in the flux esti-
mates must be expected. Second, and perhaps more subtle, is that
the symmetries of the Fisher matrix only hold on average. Thus, for
each individual peak some residual correlation between the position
and the other variables is expected. According to our current accu-
mulated experience, however, this correlation is usually very small.
Nonetheless, PwS still includes the option to use the peak positions
obtained from the MMF filtered fields just as initial hints for a full
N-dimensional Powell minimization.

4.2.2 Exploring the posterior distribution

Our initial step provides the ML estimates and the SNR of each
detection candidates. This has a very useful side effect, since we do
not need to explore the posterior distribution around all the maxima
we find. Only a much smaller sub-set is chosen based on an SNR
threshold. This SNR threshold should be low enough not to reject
any substantial fraction of peaks associated with true detections and
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high enough to make the selected sample contain a large percentage
of true sources and to include most ‘well-shaped’ maxima. This
shorter list is then sorted in descending order of SNR and one-by-one
the maxima are sent to the nested sampler, which returns an evidence
estimate and a set of weighted samples that we use to model the full
joint posterior distribution. The final catalogue is almost completely
independent of the SNR threshold if this is not too high.12 From
these samples we can compute any parameter estimate, draw joint
distribution surfaces, predict HPD intervals of any content over the
marginalized distributions to infer the parameter uncertainties, etc.,
as in the example presented in Planck Collaboration et al. (2011b,
fig. 9). The current released implementation of PwS (v3.6) computes
the ML, the expected value over the posterior estimates and 1σ error
bars.13

4.3 Non-Gaussianity of the background

It is clear that our model of the observations, like any model, is only
an approximation to the real data. This is true both for our model of
the discrete objects and for our model of the background. For the
latter, it is clear that the background emission in real observations
is neither Gaussian nor statistically homogeneous. Regarding non-
Gaussianity, we do not mean that of a primordial origin, which, if
exists, would have an insignificant effect in our analysis. We are
instead alluding to the non-Gaussianity induced by the Galactic
emission components, the confusion noise created by the sources
below the detection threshold, the instrumental noise artefacts com-
ing from the incomplete removal of the cosmic ray glitches and, of
course, a wealth of other possible sources.

Many authors simply ignore this issue and many others dismiss
its importance. A very strong argument, used many times, is that
despite the sky emission being admittedly non-Gaussian, the effect
of the finite PSF of beams will combine many different sky locations
into a single pixel. In addition, signal de-noising procedures further
combine more samples. Some authors then appeal to the Central
Limit Theorem (CLT) to claim that non-Gaussian effects in the
final data must be completely negligible.

This argument seems particularly appealing, but a deeper analysis
of the CLT shows that, in our particular problem, namely detection
and separation of two signals, the effects of the CLT are not as
important as those authors claim. Formally, the CLT only applies
when N →∞, where N is the number of random deviates in the sum.
For finite N, the CLT only guarantees the Gaussian approximation
is good for ‘a region around the mode’ (Bouchaud & Potters 2009).
The size of this Gaussian region grows very slowly. In the worst
case, the distributions of the individual deviates are skewed and have
‘fat tails’. Let us focus on a real example: the Galactic emission.
If the spectral brightness distribution follows a power law with a
finite first moment, to guarantee the field has physical behaviour,
the normalized central Gaussian region, |u|, only grows very slowly
with N:

| u |  u0 ∝
√

ln N, (48)

where u0 is the tail lower boundary. This means that the sum must
have more than 1000 terms to make the Gaussian approximation

12 This initial selection by SNR thresholding is only applied on computation
efficiency grounds. Very low SNR maxima take much longer to sample as
the likelihood manifold peaks are not properly shaped and in the end most
of the time end up being rejected.
13 The ML estimates from the maximization step are updated, if necessary,
during the sampling phase.

acceptable up to about |u| ∼ 2.6. In detection problems, where we
want to separate the maxima created by the sources from the back-
ground fluctuations, we are dealing all the time with the background
distribution upper tail:

P>
u0

≡
∫ ∞

u0

Pr(u) du. (49)

If the background field intensity distribution follows a power law:
Pr(Iν) ∝ Iν

−μ, with μ > 2, to guarantee its energy is finite, then the
probability that a sum of N deviates falls into the upper tail region
of the sum normalized distribution is

P>
u0

∝ 1

Nμ/2−1 lnμ/2 N
. (50)

This is a very serious problem. Object detection methodologies are
designed typically to suppress the background and amplify what
does not fit its model. The non-Gaussianity component is not a part
of our background model, so its effect on the detection process is
doubly pernicious: not only it is not removed, it is amplified.

There seem to be only two ways of circumventing this problem:
(i) to include the non-Gaussian effects in the statistical models;
and (ii) to manipulate and add as much data as possible to make
it more Gaussian. Owing to the complexity of Planck data it is
almost impossible to give a proper account of the non-Gaussian
effects without making the problem unsolvable. So, a workable
solution must necessarily combine as much data as possible, and
then analyse the outcome. The only possible way of doing this is to
use multi-channel analysis all the time.

Our own experience corroborates this view. The SNR values of
the PwS selected detections and the thresholds the frequentist meth-
ods normally employed (�4.0) are much higher than what would be
expected according to the purity levels of the catalogues if the statis-
tics were purely Gaussian. However the channels with the largest
beams, where each pixel is the result of a much higher number of
different contributions, do indeed have detection thresholds lower
and closer to those expected from the Gaussian theory. A good
practical example of how the multi-channel processing can help
the reduction of the impact of the non-Gaussian distributions on
the detection process is the recovery of the SZ signal (Melin et al.
2011).

Owing to the residual non-Gaussianity left in the background,
especially close to the Galactic plane, we should now expect a higher
number of background fluctuations reaching above the evidence
threshold level than those predicted by the Gaussian model. So,
eventually, we need to correct the prior on the models: Pr(H1)

Pr(H0) , as
this prior was derived assuming that the background had purely
Gaussian statistics. The simplest way, we believe, is just to count
the total number of fluctuations above the SNR threshold adopted,
before embarking on the evaluation of the evidence. In particular,
one should compare this number with what would be expected from
the Gaussian model plus the predicted source counts above the SNR
threshold and then take the larger quantity. Denoting this value by
T , a corrected estimate of λ0 (see formula 37) would read

λ0 � T − λ1. (51)

This very simple ‘trick’ provides a first-order correction to the
effects of background non-Gaussianity.

4.4 Statistical inhomogeneity of the background

Real observations will also inevitably exhibit some statistical in-
homogeneity of the background, in contradiction to our assumed
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model. Consequently, the conditions of optimality derived there-
from no longer hold. This can lead to a number of difficulties in
detecting and characterizing discrete objects, particularly in regions
of the sky that contain bright, very inhomogeneous and anisotropic
backgrounds. Indeed, this general expectation has been borne out in
applying earlier versions of PwS to detailed simulations of Planck
observations (PSM v1.6) (Delabrouille et al. 2012). In particular,
the presence of bright diffuse Galactic dust emission was found to
lead to the PwS SZ catalogue (in common with catalogues pro-
duced by other methods, such as MMF) containing bright spurious
detections. Hence one did not obtain a regular cumulative purity
curve that slowly approaches unity as the ln(evidence), or the SNR,
increases (Melin et al. 2011), in contradiction to what would be
expected from theory if our model explained the data properly.

Indeed, the detection of SZ galaxy clusters highlights further
problems. Again in the analysis of Planck simulations using previ-
ous versions of PwS, one finds that bright spurious SZ signals are not
only concentrated in complex background regions, with a fraction
of the bright spurious detections spread all across the sky. By cross-
correlating the resulting SZ catalogues with ancillary point source
data sets, one finds that bright spurious cluster detections matched
bright point source locations. In our preliminary attempts to address
this problem, we therefore first performed a point source extrac-
tion step and subsequently subtracted/masked the best-fitting point
source profiles in the maps. This pre-processing step greatly helped
in reducing the number of spurious detections, especially those with
very high evidence values. Another approach has been suggested by
the Planck WG5 team, namely the ‘χ2 test’ (Planck Collaboration
et al. 2011b). This performed very well, although, once more, there
is no easy way to choose a robust acceptance/rejection threshold
for the test. Another difficulty occurs when extracting the SZ effect
at each individual channel. The SNR was usually so low that the
measurements ended up being quite noisy.

Can we do any better using Bayesian logic? The apparent failure
of the ‘best’ test can be immediately explained using the main
Bayesian decision equation, equation (7). Our decision criterion is
based on the ln (odds), namely

ln

[
Pr(H1 | d)

Pr(H0 | d)

]
. (52)

The problem comes from the denominator Pr(H0 | d). When we find
a point source, its probability of being a cluster, Pr(H1 | d), is very
low, but the probability of those pixels being part of the background,
Pr(H0 | d), is also very low, because point sources do not fit our
model of the background either. We have already mentioned that
the binary model is too simple to handle realistic astronomical
situations. To secure the optimality of our methodology we must
ensure that the data are well described by our model, and employ a
multi-model approach, as described in Section 4.5.

4.5 The solution: multi-model, multi-frequency detection

For the reasons outlined above, we believe that a deeper and purer
catalogue can only be obtained through multi-frequency analysis.
An excellent example of the power of such an approach is provided
by the detection of SZ clusters. Despite the SZ signal being sub-
dominant on all Planck channels (the signal level is below that of the
background), an optimal combination of the different frequencies
can boost these extremely faint signals to the point where one can
now build reliable catalogues of many hundreds of such objects.

We have also demonstrated above that our simple binary decision
making approach is too naı̈ve to handle ‘real-life’ situations. The

introduction of a multi-model (more than two models) decision rule
cannot, however, be achieved simply by extending the binary case
(Jaynes 2003, ch. 3), although it is always possible to reduce the
general multi-model decision rule to a succession of binary ones.
We start by choosing one of the hypothesis, say H0 ≡ ‘this maximum
is a background fluctuation’, and making it the ‘null’ or ‘reference
hypothesis’. Then we iterate through all the hypotheses associated
with different source families and compute the �i ≡ oddsi:

�i ≡ Pr(Hi | d)

Pr(H0 | d)
; i �= 0. (53)

The optimal way of deciding between M + 1 different hypothesis
(M source types plus the null hypothesis) is by evaluating the odds
for each type of source against the null hypothesis, pick up the
largest �i, which we denote by �i∗ , and then check for the following
inequality

�i∗

1 +∑
i �=i∗ �i

Hi∗
≷
H0

ξ ′, (54)

where ξ ′ = Lspurious/Lmiss is the ratio of the losses when accepting
a false positive (spurious) and when missing a source. A source
assigned to a wrong catalogue is a ‘spurious’ in that catalogue
and at the same time a ‘miss’ in its true catalogue. This setup
might be interpreted as a ‘classification engine’ since it selects
a proposition among multiple choices. After running through all
putative detections it will end up with as many catalogues as the
initial contender hypothesis.14 Equation (54) defines the condition
which minimizes the expected loss when the loss matrix reads

Lij =

⎧⎪⎪⎨⎪⎪⎩
0 if i = j (no penalty if correct)
Lmiss(>0) if i = 0, j �= 0 (miss)
Lspurious(>0) if i �= 0, j = 0 (spurious)
Lmiss + Lspurious if i �= 0, j �= 0, i �= j (spurious + miss).

(55)

An important difference between the multiple option case (more
than two options) and the binary case is that of the different role
of the ‘null’ model in either case. In the binary case the ‘null’
catalogue will only contain those lines preferring it. However in the
multiple option case if the preferred option cannot reach the desired
acceptance/rejection level, the putative detection will be assigned
to the ‘null’ even if this was not the most favoured.

Often real data present us with (mostly unwanted) surprises (see
Section 4.4). That is when our generic model (see Section 3.1) is
useful. It is there not only for the most exciting sources, those not
falling in any of the known SED models, but also for the least
interesting, the localized artefacts. Some might question whether
this ‘safety net’ might on the contrary misguide us. Because the
physical SED models are just a special case of the generic, what
prevents our ‘decision machine’ not picking it even when one of
the other models is present. The generic SED is necessarily more
complex (has more adjustable parameters) than any of the physical
ones.15 In theory the Bayesian evidence should account for this.
Either the generic model fits the data much better (higher SNR)
or owing to the enlarged prior volume of the parameter space, the
generic model will be disfavoured.16 An important point to consider

14 Some of those catalogues might stay empty.
15 Otherwise the physical SED models would only be a re-parametrization
of the generic.
16 For a very detailed and elegant exposition why this happens, please refer
to Jaynes (2003, ch. 20) and Jeffreys (1961, ch. 5.2).

C© 2012 The Authors, MNRAS 427, 1384–1400
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



1396 P. Carvalho et al.

is the reliability of the source parameter estimates, especially when
an object is classified as ‘something else’ or the chosen model is only
marginally favoured over the set of competitors. Once again, the
Bayesian methods provide a good safety net against possible bias in
the estimates as result of mis-modelling. By inspecting the posterior
probability distributions one may check whether the probability
mass concentrates close to the boundaries of the priors, denoting
they might have had a major impact on the estimates. In this case,
as we are not completely sure about the correct description of the
object’s data, the parameter estimates should always be read with
some caution. A possible way of circumventing this problem is
through a guided (non-blind) re-extraction of the source with an
even more general model, for instance, by relaxing the priors of the
preferred model in the case that a better data description is not yet
available.

A pivotal quantity in catalogue making, as we shall shortly see,
is the probability that a certain entry in the putative catalogue is
a spurious detection: Pr(H̃i∗ |D). Providing this value is a unique
capability of the Bayesian approach. It is very simple to show that,
when extending the binary test to multiple hypotheses, the proba-
bility of a spurious detection now reads:

Pr(H̃i∗ | d) = 1

1 + ψ
, with ψ ≡ �i∗

1 + ζ
, ζ ≡

∑
i �=i∗

�i. (56)

In some extreme cases, ‘complex regions’ (Small Large Magel-
lanic Cloud, Large Magellanic Cloud, Orion, etc.) or the Galactic
plane, for instance, the splitting into small patches is not enough
to satisfy either the homogeneity of the background or the source
number counts. Moreover, the background statistics deviate so much
from the assumed model and/or source blending is so acute that the
operation of the code may break and the results stop being reliable.
In this case we apply a mask to those regions (see Appendix A). In
our view, the exclusion of these regions has only very limited impact
on the usefulness of PwS products especially when aiming at extra-
galactic science products (Planck Collaboration et al. 2011b,c,d).
In the case of point sources, however, PwS can accommodate mod-
erate source blending (no more than three sources per beam). In
this case the ‘one source at a time’ approximation no longer holds.
Thus, we have now to employ the full likelihood expression and
expand the single source parameter space to the Cartesian product
of the spaces of the individual sources we aim to de-blend. This
extension of PwS will be addressed in a forthcoming publication.

4.6 Catalogue making

The last step of PwS is to assemble the final catalogue from a list of
candidates. During this stage, PwS performs the following steps:

(i) maps flat sky patches back on to the sphere at the positions of
the putative detections;

(ii) applies a detection mask, if any;
(iii) merges multiple detections of the same source obtained in

different patches into a single candidate detection; and
(iv) makes the final catalogue by rejecting those lines that do not

meet the pre-established criterion of purity or loss.

The last step is critical to the success of our methodology. We
already gave some indication in Section 2.2.3 about how to address
the difficult task of selecting a sub-set of detections from our initial
list of candidates. If the selection criterion is based on losses, then
we just need to trim the ‘proto-catalogue’ further by applying the
decision rule (54). But, as we mentioned previously, it is much more
common in astronomy to require a catalogue to have an expected

contamination ratio or that the contamination does not exceed a
prescribed value. We are now finally in a position to show how the
Bayesian logic framework can give us exactly that.

The number of false positives in a catalogue may be represented
as a sum of Bernoulli variables. Assuming all catalogue entries
are statistically independent, the sum of N of those variables is
distributed as a Poisson–binomial distribution:

μ =
n∑

i=1

pi, σ 2 =
n∑

i=1

pi(1 − pi), (57)

where pi = Pri(H̃j∗ | d), is the probability of source i being a false
positive.

Therefore, one way to proceed is as follows:

(i) sort the list of candidate detections in ln (odds) descending
order (pi ascending order);

(ii) for each candidate, accumulate pi until μ (see formula
57) exceeds the prescribed contamination α ≡ (spuriousdetec-
tions)/(totallinesincatalogue) times the total number of lines already
included; and

(iii) discard the last line.

As μ is a sum of independent variables and N is usually a large
number (hundreds), it is perfectly reasonable to assume that the
distribution converges to a Gaussian as result of the CLT.17 So, a
good estimate of the number of spurious detections in the catalogue
is

N∑
i=1

pi ±
√√√√ N∑

i=1

pi(1 − pi), (58)

and an estimate of the fraction of spurious detections in the cata-
logue, α, reads:(

α̂ =
∑N

i=1 pi

N

)
±
√∑N

i=1 pi(1 − pi)

N
. (59)

A problem still remains, however, since our calculation of
Pri(H̃i∗ | D) is only an approximation, although we do have an esti-
mate of the ln (odds) evaluation uncertainty [for a rigorous treatment
see Keeton (2011)]. We therefore need to introduce corrections into
the above formulas to account for the uncertainty on pi. It is easy to
verify that, to a first approximation, the error on pi, reads

| �pi | � γpi(1 − pi) (60)

where the value of γ is the average evidence evaluation fractional
error. The corrected value of the catalogue’s variance on the number
of spurious, σ ′2, is always less than

σ ′2 � (1 + γ )
n∑

i=1

pi(1 − pi), (61)

and the variance on μ reads

| �μ | 2 � γ 2
n∑

i=1

p2
i (1 − pi)

2 < γ

n∑
i=1

pi(1 − pi). (62)

Thus, we get the final expression of predicted contamination of the
catalogue by adding both contributions in quadrature:(

α̂ =
∑N

i=1 pi

N

)
±

√
1 + 2γ

√∑N
i=1 pi(1 − pi)

N
. (63)

17 Note this time we are working around the distribution mode.
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The uncertainty on the contamination of the catalogue for com-
monly accepted levels (∼10 per cent), catalogue size (�1000) and
γ as large as 0.32, is always �1.2 per cent.

Finally, we are now in position to answer the key question all
the frequentist methods must at some point face, ‘what threshold
should one use for accepting the candidates for inclusion in the
final catalogue?’, although the question is no longer relevant in our
Bayesian approach, since it is an output of our catalogue-making
method, rather than an input. The answer is just “the ln (odds)
estimate of the last line of the final catalogue’, since the initial list
of putative detections was sorted in descending order of ln (odds)
and all those with a higher or equal ln (odds), and only those, were
selected for inclusion.

4.6.1 Estimation of the catalogue completeness

In the last section we devoted ourselves to the design of a catalogue
with a prescribed ‘purity’.18 As important, however, is ‘complete-
ness’, the percentage of objects above a certain amplitude/flux,
present in our data that we successfully included in our catalogue.
In DT language, Pr(Dj | Hj ).19 Curiously, the purity of the cata-
logue may be represented just by swapping Hj with Dj, Pr(Hj | Dj ).
These quantities can be related using Bayes theorem, but the other
quantities involved are difficult to define and quantify in a practi-
cal problem. Purity is intrinsically a Bayesian quantity, a posterior
probability, by virtue of the decision, Dj = Dj (d), being a func-
tion of the data only. Completeness is very closely related with the
likelihood. Fortunately, point source detection can be accurately
modelled by (i) a one-sided test, (ii) a distribution belonging to the
exponential family (a Gaussian in our case) and (iii) a monotone
likelihood ratio (Van Trees 2001). This set of conditions guarantees
a ‘Uniform Most Powerful’ (UMP) test exists with significance, α

and ‘Power’, P. Translating from the frequentist dialect into that of
the astronomers, this means that one single SNR threshold is enough
to assure a catalogue has a certain purity, α and completeness, P.
Recalling the equivalence between Bayesian posterior probabilities,
when using non-informative priors, and the equivalent sampling dis-
tributions from the orthodox theory (Box & Tiao 1992, ch. 2), we
define a new variable

ζ̂ = Â − A

σA

∼ N (0, 1), (64)

where A is the true value of the source amplitude, assumed non-
random in this context, and σ A is the variance of the random variable
Â defined in (20). The ζ̂ statistic (frequentist dialect) is normally
distributed (see equation 26). Now let us define γ σ A as the am-
plitude threshold for rejection/acceptance. So the completeness,
Pr(Dj | Hj ), reads

∫ +∞

γ− A
σA

N (0, 1) dζ =
1 + erf

[√
2

2

(
A
σA

− γ
)]

2
, (65)

where erf() is the Gauss error function. However when dealing with
extended objects, the conditions for a UMP do not hold anymore.
The acceptance/rejection threshold now depends, at least, on the

18 Some authors prefer ‘reliability’.
19 In this context Hj identifies not only the source family but also the flux
cut, i.e. different flux cuts map into different j. This probability in frequentist
language is the ‘Power of the test’.

geometrical parameter that controls the extension of the objects and
the completeness estimate of the sample is no longer trivial.

To give a proper assessment of the purity, except on the sim-
plest cases, frequentist methods ought to resort to simulations. The
simulations need to emulate the most realistic astronomical back-
grounds at the frequencies of interest and the instrumental effects as
closely as possible. Modern cosmological data sets are increasingly
larger and more complex, rendering this task immensely resource
consuming. Apparently it seems that PwS still relies on a SNR cut
to predict/define the completeness of the catalogue. That means we
would be throwing away most of the advantage of using a Bayesian
detection method, as any catalogue is essentially useless unless it
provides a measure of how representative it is of the population
of the objects under scrutiny. Fortunately, this apparent limitation
may be easily overcome by very realistic simulations that at the
same time are simple and fast to construct: injecting mock source
populations into the real maps and then recovering them. These sim-
ulations might not be optimal to assess purity but they provide the
most realistic possible test bed for measuring completeness (Planck
Collaboration et al. 2011a).

4.6.2 Validation (follow-up)

No science quality catalogue is complete without a proper valida-
tion. Validation tests the assumptions, physical and statistical, and
whether our models are actually a truthful representation of reality.
Only a thorough validation can actually provide a sensible way to
assess how systematics, mis-modelling and statistical bias impair
the properties of the catalogue and its estimates. Further analysis of
formula (47) shows that the catalogue penalty per source, P̂s, con-
centrates into a single number the least well defined prior quantities,
namely the expected number counts of a population above a certain
flux (λ1), the expected number of background fluctuations above the
same threshold (λ0), etc. The non-Gaussianity of the background,
the instrumental or map-making artefacts and the uncertainty on
the priors most likely alter this value from the fiducial prediction.
A properly calibrated P̂s may be easily found initially by using
simulations and later consolidated through validation.

Of particular note is how detection/estimation in Bayesian meth-
ods can unleash the power of validation by bringing together dif-
ferent instrumental capabilities into a unified and coherent analysis.
Joint variate analyses are natural inside the Bayesian logic frame-
work. They are the most powerful way to cross-validate and enhance
the quality of catalogues. An example may be found in Planck et al.
(2012) where a joint Bayesian analysis has allowed us to impose
tighter and better defined constraint on the estimates, Y500 and �500,
of an 11 cluster subset of the Planck Early SZ galaxy cluster cata-
logue.

5 IM P L E M E N TAT I O N H I S TO RY

The data analysis philosophy and a set of algorithms described in
this paper have not so far been fully implemented in a coded ver-
sion of PwS. We are working towards this aim, and the release
corresponding to the full set of features described here will be PwS
v4.0. The versions that have been used in published data analyses
so far are v1.5 and v3.1 for the SZ Challenge (Melin et al. 2011),
v2.01 for the lower frequency point sources in the Planck ERCSC
(Planck Collaboration et al. 2011a) and for all frequency channels
in the Compact Source Investigation (CSI) workshop (Rocha et al.,
in preparation), v3.6 in application to the SZ cluster detection in the
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Planck ESZ sample (Planck Collaboration et al. 2011b) and to char-
acterize single cluster parameters in a non-blind exercise (Planck
Collaboration et al. 2011e). It is worth noting that these versions in-
clude a pre-processing tool specifically designed to convert data sets
distributed within the Planck collaboration into the format required
by PwS. The main tasks performed by this tool are:

(i) taking account of the masking and/or flagging of ill-observed
pixels and contaminated regions;

(ii) projecting the spherical maps into flat patches;20

(iii) mapping of coordinates from the sphere into the patches and
back;

(iv) removal of multiple detections of the same source in different
patches;

(v) assembly of the output catalogues into the required format.

The existing released versions of PwS differ from what will be
available in v4.0 mainly in the limitation to a binary model selection
step in determining when to accept a putative source detection and
a non-parametrized frequency spectrum in multi-frequency detec-
tion. The latter restriction meant that, while the SZ cluster detection
could be carried out using all Planck frequencies simultaneously,
point source detections, in common with the other methods avail-
able, were carried out for each frequency channel separately. PwS
v4.0 will aim at genuine multi-frequency and indeed multi-model
detection, using all the available data simultaneously.

6 C O N C L U S I O N S

The Planck satellite and many other modern cosmological data sets
present completely new challenges for the detection and description
of compact objects. Two important traits of such observations are (i)
low or very low SNRs; and (ii) strongly correlated backgrounds with
typical scales similar to those of the objects being sought. These
attributes render traditional object detection methods sub-optimal,
since: (i) it is difficult to separate the sources from the background
fluctuations; and (ii) the uncertainties on derived source parameters
are important and traditional methods do not provide them.

A better strategy is to develop an object detection methodology
from a strong statistical foundation first. The linear filtering family
of tools is the attempt by the orthodox frequentist school of proba-
bility to overcome these limitations. The MF and all its derivatives
are based on the Neymann–Pearson likelihood ratio, although their
optimal performance is extremely dependent on the choice of the
acceptance/rejection threshold and on implementation details. De-
spite their widespread use, the actual practical designs of these tools
do not yet implement a sound framework to handle the uncertainties
on the parameter estimates.

Bayesian methods have the great advantage of providing a coher-
ent probability methodology with the option to include, in a com-
pletely consistent way, all ancillary information. But probability
theory by itself only gives us a degree of belief. In order to produce
a catalogue, decisions must be made as well. DT is unambiguous:
ln[ Pr(H1 | d)

Pr(H0 | d) ] is the optimal decision tool (in the binary case), although
the binary model is manifestly not powerful enough to handle a real
data set. The necessary extension to a multi-model foundation is
mandatory for an operational and viable solution. PwSII builds up
on top of PwSI in the sense that it inherits its strong probability

20 The patch set usually contains about 12 0007.◦33 × 7.◦33 flat patches or
300014.◦66 × 14.◦66.

and Bayesian legacy. Furthermore, it complements it with a fast de-
tection/characterization Bayesian methodology based on ln (odds)
and extends it to a multi-channel, multiple model decision rule.
Simultaneously, the evaluation of the evidence is no longer based
on a multi-dimensional Gaussian approximation to the posterior
manifold but instead on a single-nested sampling scheme mostly
independent of the manifold geometry. To achieve our goal we fo-
cused on taking advantage of the symmetries of the multi-channel
likelihood manifold to design an efficient, though rigorous, explo-
ration tool. Owing to its full, consistent probability foundation, PwS
can provide a sound, generally applicable,21 and complete statistical
characterization of its results. Simultaneously, we can offer effec-
tive solutions for the difficulties accompanying real data, without
compromising any of our goals.

Some might question that conditioning our reasoning by priors
might actually impair or even mislead the inference, especially if
these are neither complete nor accurate. We are partially sympa-
thetic with this, but:

(i) if the data contain enough information and can actually con-
strain the object parameter estimates, the priors are mostly irrele-
vant.22

(ii) PwSII Bayesian modelling is still incomplete. Fundamental
physics can most of the time constrain the general shape of the priors
but not the actual parameter values they depend upon. Bayesian
methods allow not only the estimation of each object parameters
but also the parameters in the priors that provide the population
laws. These probability models are commonly called ‘hierarchical’
or ‘random effect’ (see Box & Tiao 1992, ch. 5; Jaynes 2003, ch. 6)
and will constitute the main subject of a future publication.
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2011, MNRAS, 414, 410

Bennett C. L. et al., 2003, ApJS, 148, 97
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Birkinshaw M., 1999, Phys. Rep., 310, 97
Bouchaud J.-P., Potters M., 2009, Theory of Financial Risk and Derivative

Pricing, 2nd edn. Cambridge Univ. Press, Cambridge
Box G. E., Tiao G. C., 1992, Bayesian Inference in Statistical Analysis.

Wiley, New York

21 If the assumptions of our data model are met (see section 3.1), PwS,
or any similarly implemented Bayesian detection tool, can be used in any
instrumental setup scenario, from radio to gamma-ray frequencies.
22 In the sense that any eventual bias induced by the prior will always much
smaller than the statistical uncertainty.

C© 2012 The Authors, MNRAS 427, 1384–1400
Monthly Notices of the Royal Astronomical Society C© 2012 RAS



PowellSnakes II: multi-channel detection 1399

Bracewell R., 1965, The Fourier Transform and Its Applications, 3rd edn.
McGraw-Hill, New York

Carvalho P., Rocha G., Hobson M. P., 2009, MNRAS, 393, 681
de Zotti G., Ricci R., Mesa D., Silva L., Mazzotta P., Toffolatti L., González-
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A P P E N D I X A : PW S A L G O R I T H M
I M P L E M E N TAT I O N

PwS operation may be broadly divided in three main steps.

(i) Pre-processing
Makes the masks, creates the flat patches geometry and computes
the pixel values.

(ii) Detection/estimation
Performs the detection by creating a list of candidates and respective
parameter estimates.

(iii) Post-processing
Removes repeated detections of the same source across different
patches, selects the candidates to be included in the catalogue, for-
mats and writes it to the media.

A1 PwS step by step

A1.1 Pre-processing

(i) Reads in the data channel maps together with those defining
the masks, and galactic and point sources (SZ). Renders auxiliary
maps to flag heavily contaminated areas and possible ill-defined
pixels.

(ii) Defines the patches’ geometry using a gnomonic projection.
Patches are squares, usually 256 or 512 pixels wide and the pixel
area is ∼1.718 × 1.718 arcmin2. The pixel values are computed
using a bilinear interpolation. With the mask information from the
first step, the pixels flagged as ‘not usable’ are filled with values that
preserve the statistical properties of the background (‘in-painting’).

A1.2 Detection/estimation

(i) For each one of the patches repeat the next steps at least twice:
(a) Estimate the cross-power spectrum matrix and invert each

Fourier mode.
(b) Create the likelihood manifold.
(c) Scan the likelihood manifold searching for its maxima us-

ing a grid. Store the maxima coordinates as initial hints.
(d) Sort the putative detections in descending order of likeli-

hood ratio.
(e) For each one of the candidates do:

(1) use a Powell minimizer to estimate the optimal values
(likelihood maximum estimate) of the source’s parameters:
position, flux and radius.23

(2) If this is not the last iteration:
(A) If the SNR of the candidate is above a certain thresh-

old (high) mask it. Go back to the beginning of the process-
ing of this patch and start all over again.24

(B) Subtract the object from the maps. Continue with the
next iteration (candidate source).

(C) If running in The Generalized Likelihood Ratio Test
(GLRT) mode.
Test the computed SNR value against the threshold for ac-
ceptance/rejection. If the detection is accepted then add it to
the intermediate catalogue.

23 Even when doing point source extraction PwS never assumes the objects
as point like and shapeless. A narrow, but with finite dimensions, Gaussian
is employed instead.
24 This operation is restricted to point source detection only.
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(D) If running in ln (odds) (Bayesian) mode.
With the estimates from the previous step predict an initial

bounding parameter volume and explore the posterior distri-
bution using a simple nested sampling algorithm. Evaluate
the ln (odds) ≡ [ln( Pr(H1 | d)

Pr(H0 | d) )].
Several sets of priors can be used. With the samples drawn

from the posterior compute the best parameter estimates,
mode or expected value estimators and the uncertainties on
the parameters and the ln (odds). Always add the detection
to the intermediate catalogue. If necessary it will be removed
during the post-processing stage.
(3) Subtract the object from the maps and continue with the

next candidate.

A1.3 Post-processing

(i) Map the position coordinates of the detections from the patch
pixels back on to sphere coordinates.

(ii) Using the auxiliary mask maps filter the intermediate cata-
logue removing those detections laying on top of the flagged areas.

(iii) Remove repeated detections from the intermediate catalogue
choosing always that one with the largest SNR (GLRT) or ln (odds)
(Bayesian). Generate the catalogue using a SNR cut (GLRT) or
probability of a false positive (Bayesian).
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