24 research outputs found

    The human papillomavirus type 16 E7 oncoprotein targets Myc-interacting zinc-finger protein-1

    Get PDF
    AbstractWe demonstrate that HPV-16 E7 forms a complex with Miz-1. UV-induced expression of the CDK-inhibitor p21Cip1 and subsequent cell cycle arrest depends upon endogenous Miz-1 in HPV-negative C33A cervical cancer cells containing mutated p53. Transient expression of E7 in C33A inhibits UV-induced expression of p21Cip1 and overcomes Miz-1-induced G1-phase arrest. The C-terminal E7Δ79LEDLL83-mutant with reduced Miz-1-binding capacity was impaired in its capability to repress p21Cip1 expression; whereas the pRB-binding-deficient E7C24G-mutant inhibited p21Cip1 expression similar to wild-type E7. Using ChIP, we demonstrate that endogenous E7 is bound to the endogenous p21Cip1 core-promoter in CaSki cells and RNAi-mediated knock down of Miz-1 abrogates E7-binding to the p21Cip1 promoter. Co-expression of E7 with Miz-1 inhibited Miz-1-induced p21Cip1 expression from the minimal-promoter via Miz-1 DNA-binding sites. Co-expression of E7Δ79LEDLL83 did not inhibit Miz-1-induced p21Cip1 expression. E7C24G retained E7-wild-type capability to inhibit Miz-1-dependent transactivation. These findings suggest that HPV-16 E7 can repress Miz-1-induced p21Cip1 gene expression

    Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1

    Get PDF
    Myc plays a key role in homeostasis of the skin. We show that Miz1, which mediates Myc repression of gene expression, is expressed in the epidermal basal layer. A large percentage of genes regulated by the Myc–Miz1 complex in keratinocytes encode proteins involved in cell adhesion, and some, including the α6 and β1 integrins, are directly bound by Myc and Miz1 in vivo. Using a Myc mutant deficient in Miz1 binding (MycV394D), we show that Miz1 is required for the effects of Myc on keratinocyte responsiveness to TGF-β. Myc, but not MycV394D, decreases keratinocyte adhesion and spreading. In reconstituted epidermis, Myc induces differentiation and loss of cell polarization in a Miz1-dependent manner. In vivo, overexpression of β1 integrins restores basal layer polarity and prevents Myc-induced premature differentiation. Our data show that regulation of cell adhesion is a major function of the Myc–Miz1 complex and suggest that it may contribute to Myc-induced exit from the epidermal stem cell compartment

    The Arf tumor suppressor protein inhibits Miz1 to suppress cell adhesion and induce apoptosis

    Get PDF
    Arf assembles a complex containing Miz1, heterochromatin, and histone H3K3 to block expression of genes involved in cell adhesion and signal transduction. The resulting blockade of cell–cell and cell–matrix interactions facilitates elimination of cells carrying oncogenic mutations

    The German National Pandemic Cohort Network (NAPKON): rationale, study design and baseline characteristics

    Get PDF
    Schons M, Pilgram L, Reese J-P, et al. The German National Pandemic Cohort Network (NAPKON): rationale, study design and baseline characteristics. European Journal of Epidemiology . 2022.The German government initiated the Network University Medicine (NUM) in early 2020 to improve national research activities on the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. To this end, 36 German Academic Medical Centers started to collaborate on 13 projects, with the largest being the National Pandemic Cohort Network (NAPKON). The NAPKON's goal is creating the most comprehensive Coronavirus Disease 2019 (COVID-19) cohort in Germany. Within NAPKON, adult and pediatric patients are observed in three complementary cohort platforms (Cross-Sectoral, High-Resolution and Population-Based) from the initial infection until up to three years of follow-up. Study procedures comprise comprehensive clinical and imaging diagnostics, quality-of-life assessment, patient-reported outcomes and biosampling. The three cohort platforms build on four infrastructure core units (Interaction, Biosampling, Epidemiology, and Integration) and collaborations with NUM projects. Key components of the data capture, regulatory, and data privacy are based on the German Centre for Cardiovascular Research. By April 01, 2022, 34 university and 40 non-university hospitals have enrolled 5298 patients with local data quality reviews performed on 4727 (89%). 47% were female, the median age was 52 (IQR 36-62-) and 50 pediatric cases were included. 44% of patients were hospitalized, 15% admitted to an intensive care unit, and 12% of patients deceased while enrolled. 8845 visits with biosampling in 4349 patients were conducted by April 03, 2022. In this overview article, we summarize NAPKON's design, relevant milestones including first study population characteristics, and outline the potential of NAPKON for German and international research activities.Trial registration https://clinicaltrials.gov/ct2/show/NCT04768998 . https://clinicaltrials.gov/ct2/show/NCT04747366 . https://clinicaltrials.gov/ct2/show/NCT04679584. © 2022. The Author(s)

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1

    No full text
    The Myc-associated zinc-finger protein, Miz1, activates transcription of the p21cip1 gene in response to UV irradiation. Miz1 associates with topoisomerase II binding protein1 (TopBP1), an essential activator of the Atr kinase. We show here that Miz1 is required for the recruitment of a fraction of TopBP1 to chromatin, for the protection of TopBP1 from proteasomal degradation and for Atr-dependent signal transduction. TopBP1 that is not bound to chromatin is degraded by the HectH9 (Mule, ARF-BP1 and HUWE1) ubiquitin ligase. Myc antagonizes the binding of TopBP1 to Miz1; as a result, expression of Myc leads to dissociation of TopBP1 from chromatin, reduces the amount of total TopBP1 and attenuates Atr-dependent signal transduction. Our data show that Miz1 and Myc affect the activity of the Atr checkpoint through their effect on TopBP1 chromatin association and stability

    Targeting Translation Initiation Bypasses Signaling Crosstalk Mechanisms That Maintain High MYC Levels in Colorectal Cancer

    No full text
    Deregulated expression of MYC is a driver of colorectal carcinogenesis, suggesting that inhibiting MYC may have significant therapeutic value. The PI3-kinase and mTOR pathways control MYC turnover and translation, respectively, providing a rationale to target both pathways to inhibit MYC. Surprisingly, inhibition of PI3-kinase does not promote MYC turnover in colon carcinoma cells, but enhances MYC expression since it promotes FOXO-dependent expression of growth factor receptors and MAPkinase-dependent transcription of MYC. Inhibition of mTOR fails to inhibit translation of MYC, since levels of 4E-BPs are insufficient to fully sequester eIF4E and since an IRES-element in the 5’-UTR of the MYC permits translation independent of eIF4E. A small molecule inhibitor of the translation factor, eIF4A, silvestrol, bypasses the signaling feedbacks, reduces MYC translation and inhibits tumor growth in a mouse model of colorectal tumorigenesis. We propose that targeting translation initiation is a promising strategy to limit MYC expression in colorectal tumors

    Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer

    No full text
    Deregulated expression of MYC is a driver of colorectal carcinogenesis, suggesting that inhibiting MYC may have significant therapeutic value. The PI3K and mTOR pathways control MYC turnover and translation, respectively, providing a rationale to target both pathways to inhibit MYC. Surprisingly, inhibition of PI3K does not promote MYC turnover in colon carcinoma cells, but enhances MYC expression because it promotes FOXO-dependent expression of growth factor receptors and MAPK-dependent transcription of MYC. Inhibition of mTOR fails to inhibit translation of MYC, because levels of 4EBPs are insufficient to fully sequester eIF4E and because an internal ribosomal entry site element in the 5′-untranslated region of the MYC mRNA permits translation independent of eIF4E. A small-molecule inhibitor of the translation factor eIF4A, silvestrol, bypasses the signaling feedbacks, reduces MYC translation, and inhibits tumor growth in a mouse model of colorectal tumorigenesis. We propose that targeting translation initiation is a promising strategy to limit MYC expression in colorectal tumors. Significance: Inhibiting MYC function is likely to have a significant therapeutic impact in colorectal cancers. Here, we explore several strategies to target translation initiation in order to block MYC expression. We show that a small-molecule inhibitor of eIF4A inhibits MYC expression and suppresses tumor growth in vivo
    corecore