3,035 research outputs found

    Perbankan Syariah

    Full text link

    The role of temperature in the magnetic irreversibility of type-I Pb superconductors

    Full text link
    Evidence of how temperature takes part in the magnetic irreversibility in the intermediate state of a cylinder and various disks of pure type-I superconducting lead is presented. Isothermal measurements of first magnetization curves and magnetic hysteresis cycles are analyzed in a reduced representation that defines an equilibrium state for flux penetration in all the samples and reveals that flux expulsion depends on temperature in the disks but not in the cylinder. The magnetic field at which irreversibility sets in along the descending branch of the hysteresis cycle and the remnant magnetization at zero field are found to decrease with temperature in the disks. The contributions to irreversibility of the geometrical barrier and the energy minima associated to stress defects that act as pinning centers on normal-superconductor interfaces are discussed. The differences observed among the disks are ascribed to the diverse nature of the stress defects in each sample. The pinning barriers are suggested to decrease with the magnetic field to account for these results

    Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic

    Get PDF
    In the surface ocean, microorganisms are both a source of extracellular H2O2 and, via the production of H2O2 destroying enzymes, also one of the main H2O2 sinks. Within microbial communities, H2O2 sources and sinks may be unevenly distributed and thus microbial community structure could influence ambient extracellular H2O2 concentrations. Yet the biogeochemical cycling of H2O2 and other reactive oxygen species (ROS) is rarely investigated at the community level. Here, we present a time series of H2O2 concentrations during a 28-day mesocosm experiment where a pCO2 gradient (400–1,450 ÎŒatm) was applied to subtropical North Atlantic waters. Pronounced changes in H2O2 concentration were observed over the duration of the experiment. Initially H2O2 concentrations in all mesocosms were strongly correlated with surface H2O2 concentrations in ambient seawaters outside the mesocosms which ranged from 20 to 92 nM over the experiment duration (Spearman Rank Coefficients 0.79–0.93, p-values 300 nM in some mesocosms (2–6 fold higher than ambient seawaters). The correlation with ambient H2O2 was then no longer significant (p > 0.05) in all treatments. Furthermore, changes in H2O2 could not be correlated with inter-day changes in integrated irradiance. Yet H2O2 concentrations in most mesocosms were inversely correlated with bacterial abundance (negative Spearman Rank Coefficients ranging 0.59–0.94, p-values < 0.001–0.03). Our results therefore suggest that ambient H2O2 concentration can be influenced by microbial community structure with shifts toward high bacterial abundance correlated with low extracellular H2O2 concentrations. We also infer that the nature of mesocosm experiment design, i.e., the enclosure of water within open containers at the ocean surface, can strongly influence extracellular H2O2 concentrations. This has potential chemical and biological implications during incubation experiments due to the role of H2O2 as both a stressor to microbial functioning and a reactive component involved in the cycling of numerous chemical species including, for example, trace metals and haloalkanes
    • 

    corecore