403 research outputs found
Prolonged Rehabilitation of Jones Fracture in Division I-A Collegiate American Football Player: A Case Report
Objective: To describe the prolonged rehabilitation program for a Jones fracture in a Division I-A American football player.
Background: A 21 year old, African American, collegiate football player (body mass= 264 lb; height= 76.5 in; body fat= 16.0%) complained of a sharp pain at the dorsal aspect of the left foot. The athlete experiences a compressive force to the fifth metatarsal and upon evaluation, mild swelling was present along the lateral aspect of the foot.
Differential Diagnosis: Jones fracture, metatarsal fracture, bone contusion.
Treatment: An intramedullary fixation surgery was scheduled two weeks post injury, to correct and stabilize the fracture. Intramedullary fixation is a method of mending the bone internally with a screw, wire, or metal plate along the fractured bone length wise. Following surgery the athlete continued use of crutches for ambulation and was placed in a removable walking boot for 5 weeks.
Uniqueness: This case presented a unique challenge in the rehabilitation program, as the athlete experienced slow formation of the bone callus and therefore a prolonged rate of recovery. The athlete was in a walking boot longer than expected (2 weeks longer than anticipated) which inhibited advancement in his rehabilitation due to a slow bone callus formation. A soft callus usually begins to form at day 5 following injury, but documentation was incomplete, and a hypothesis for slow bone callus formation could be secondary to lengthened time between injury occurrence and injury reporting. The athlete may have been weight bearing during the early callus formation, but healing may have been prohibited. Also, vascularization in the area is already limited and may also have played a role in delayed bone growth.
Conclusions: Although the return to participation was longer than expected, the rehabilitation program was successful in returning the athlete to competition
Women in thoracic surgery: European perspectives
During the last decades, women have been discouraged from entering the medical career and in particular in the surgical specialties. This situation is changing across continents and national and international initiatives are supporting aspiring female surgeons in pursuing the surgical career through mentorship and fellowship programmes. Due to the differences in training programmes, Health Care systems and cultural backgrounds, it's not easy to describe unanimously the pathways and obstacles that junior female thoracic surgeons are experiencing in Europe. The development of female surgical associations, mentorship programmes and national initiatives will further champion the gender equality in this specialty across Europe. During the recent years, the European Society of Thoracic Surgeons (ESTS) has established initiatives like the first ESTS Women in Thoracic Surgery Scientific Session or the annual Women in Thoracic ESTS Reception during the Annual Conference, which are done in an effort to encourage all female colleagues to join this specialty and increase the opportunity to share their experience and meet potential mentors. In this article we will depict the situation in some of the European countries whose female thoracic surgeons have led their way. We aim to give the next generation the examples that can influence women's choice of surgical career, and the possible strategies and initiatives to reduce the gender discrimination within healthcare
Polarimetric Properties of Event Horizon Telescope Targets from ALMA
We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%â15%) and large rotation measures (RM > 10^{3.3}â10^{5.5} rad m^{â2}), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (â4.2 ± 0.3) Ă 10^{5} rad m^{â2} at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (â2.1 ± 0.1) Ă 10^{5} rad m^{â2} at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from â1.2 to 0.3 Ă 10^{5} rad m^{â2} at 3 mm and â4.1 to 1.5 Ă 10^{5} rad m^{â2} at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA
Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants
partially_open1412sĂŹWe present directed searches for continuous gravitational waves from the neutron stars in the Cassiopeia A (Cas A) and Vela Jr. supernova remnants. We carry out the searches in the LIGO detector data from the first six months of the third Advanced LIGO and Virgo observing run using the weave semicoherent method, which sums matched-filter detection-statistic values over many time segments spanning the observation period. No gravitational wave signal is detected in the search band of 20â976 Hz for assumed source ages greater than 300 years for Cas A and greater than 700 years for Vela Jr. Estimates from simulated continuous wave signals indicate we achieve the most sensitive results to date across the explored parameter space volume, probing to strain magnitudes as low as
âŒ6.3Ă10^â26 for Cas A and âŒ5.6Ă10^â26 for Vela Jr. at frequencies near 166 Hz at 95% efficiency.openAbbott, R.; Abbott, T.âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R.âX.; Adya, V.âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P.âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S.âB.; Anderson, W.âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S.âV.; Ansoldi, S.; Antelis, J.âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M.âC.; Areeda, J.âS.; ArĂšne, M.; Arnaud, N.; Aronson, S.âM.; Arun, K.âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S.âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M.âK.âM.; Badger, C.; Bae, S.; Baer, A.âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S.âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J.âC.; Barbieri, C.; Barish, B.âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M.âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J.âC.; Baylor, A.âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V.âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T.âF.; Bentley, J.âD.; BenYaala, M.; Bergamin, F.; Berger, B.âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I.âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi, M.; Bizouard, M.-A.; Blackburn, J.âK.; Blair, C.âD.; Blair, D.âG.; Blair, R.âM.; Bobba, F.; Bode, N.; Boer, M.; Bogaert, G.; Boldrini, M.; Bonavena, L.âD.; Bondu, F.; Bonilla, E.; Bonnand, R.; Booker, P.; Boom, B.âA.; Bork, R.; Boschi, V.; Bose, N.; Bose, S.; Bossilkov, V.; Boudart, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P.âR.; Bramley, A.; Branch, A.; Branchesi, M.; Brau, J.âE.; Breschi, M.; Briant, T.; Briggs, J.âH.; Brillet, A.; Brinkmann, M.; Brockill, P.; Brooks, A.âF.; Brooks, J.; Brown, D.âD.; Brunett, S.; Bruno, G.; Bruntz, R.; Bryant, J.; Bulik, T.; Bulten, H.âJ.; Buonanno, A.; Buscicchio, R.; Buskulic, D.; Buy, C.; Byer, R.âL.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. CalderĂłn; Callaghan, J.âD.; Callister, T.âA.; Calloni, E.; Cameron, J.; Camp, J.âB.; Canepa, M.; Canevarolo, S.; Cannavacciuolo, M.; Cannon, K.âC.; Cao, H.; Capote, E.; Carapella, G.; Carbognani, F.; Carlin, J.âB.; Carney, M.âF.; Carpinelli, M.; Carrillo, G.; Carullo, G.; Carver, T.âL.; Diaz, J. Casanueva; Casentini, C.; Castaldi, G.; Caudill, S.; CavagliĂ , M.; Cavalier, F.; Cavalieri, R.; Ceasar, M.; Cella, G.; CerdĂĄ-DurĂĄn, P.; Cesarini, E.; Chaibi, W.; Chakravarti, K.; Subrahmanya, S. Chalathadka; Champion, E.; Chan, C.-H.; Chan, C.; Chan, C.âL.; Chan, K.; Chandra, K.; Chanial, P.; Chao, S.; Charlton, P.; Chase, E.âA.; Chassande-Mottin, E.; Chatterjee, C.; Chatterjee, Debarati; Chatterjee, Deep; Chaturvedi, M.; Chaty, S.; Chen, H.âY.; Chen, J.; Chen, X.; Chen, Y.; Chen, Z.; Cheng, H.; Cheong, C.âK.; Cheung, H.âY.; Chia, H.âY.; Chiadini, F.; Chiarini, G.; Chierici, R.; Chincarini, A.; Chiofalo, M.âL.; Chiummo, A.; Cho, G.; Cho, H.âS.; Choudhary, R.âK.; Choudhary, S.; Christensen, N.; Chu, Q.; Chua, S.; Chung, K.âW.; Ciani, G.; Ciecielag, P.; CieĆlar, M.; Cifaldi, M.; Ciobanu, A.âA.; Ciolfi, R.; Cipriano, F.; Cirone, A.; Clara, F.; Clark, E.âN.; Clark, J.âA.; Clarke, L.; Clearwater, P.; Clesse, S.; Cleva, F.; Coccia, E.; Codazzo, E.; Cohadon, P.-F.; Cohen, D.âE.; Cohen, L.; Colleoni, M.; Collette, C.âG.; Colombo, A.; Colpi, M.; Compton, C.âM.; Constancio, M.; Conti, L.; Cooper, S.âJ.; Corban, P.; Corbitt, T.âR.; Cordero-CarriĂłn, I.; Corezzi, S.; Corley, K.âR.; Cornish, N.; Corre, D.; Corsi, A.; Cortese, S.; Costa, C.âA.; Cotesta, R.; Coughlin, M.âW.; Coulon, J.-P.; Countryman, S.âT.; Cousins, B.; Couvares, P.; Coward, D.âM.; Cowart, M.âJ.; Coyne, D.âC.; Coyne, R.; Creighton, J.âD.âE.; Creighton, T.âD.; Criswell, A.âW.; Croquette, M.; Crowder, S.âG.; Cudell, J.âR.; Cullen, T.âJ.; Cumming, A.; Cummings, R.; Cunningham, L.; Cuoco, E.; CuryĆo, M.; Dabadie, P.; Canton, T. Dal; DallâOsso, S.; DĂĄlya, G.; Dana, A.; DaneshgaranBajastani, L.âM.; DâAngelo, B.; Danilishin, S.; DâAntonio, S.; Danzmann, K.; Darsow-Fromm, C.; Dasgupta, A.; Datrier, L.âE.âH.; Datta, S.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G.âS.; Davis, D.; Davis, M.âC.; Daw, E.âJ.; Dean, R.; DeBra, D.; Deenadayalan, M.; Degallaix, J.; De Laurentis, M.; DelĂ©glise, S.; Del Favero, V.; De Lillo, F.; De Lillo, N.; Del Pozzo, W.; DeMarchi, L.âM.; De Matteis, F.; DâEmilio, V.; Demos, N.; Dent, T.; Depasse, A.; De Pietri, R.; De Rosa, R.; De Rossi, C.; DeSalvo, R.; De Simone, R.; Dhurandhar, S.; DĂaz, M.âC.; Diaz-Ortiz, M.; Didio, N.âA.; Dietrich, T.; Di Fiore, L.; Di Fronzo, C.; Di Giorgio, C.; Di Giovanni, F.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Ding, B.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Divakarla, A.âK.; Dmitriev, A.; Doctor, Z.; DâOnofrio, L.; Donovan, F.; Dooley, K.âL.; Doravari, S.; Dorrington, I.; Drago, M.; Driggers, J.âC.; Drori, Y.; Ducoin, J.-G.; Dupej, P.; Durante, O.; DâUrso, D.; Duverne, P.-A.; Dwyer, S.âE.; Eassa, C.; Easter, P.âJ.; Ebersold, M.; Eckhardt, T.; Eddolls, G.; Edelman, B.; Edo, T.âB.; Edy, O.; Effler, A.; Eichholz, J.; Eikenberry, S.âS.; Eisenmann, M.; Eisenstein, R.âA.; Ejlli, A.; Engelby, E.; Errico, L.; Essick, R.âC.; EstellĂ©s, H.; Estevez, D.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T.âM.; Ewing, B.âE.; Fafone, V.; Fair, H.; Fairhurst, S.; Farah, A.âM.; Farinon, S.; Farr, B.; Farr, W.âM.; Farrow, N.âW.; Fauchon-Jones, E.âJ.; Favaro, G.; Favata, M.; Fays, M.; Fazio, M.; Feicht, J.; Fejer, M.âM.; Fenyvesi, E.; Ferguson, D.âL.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, T.âA.; Fidecaro, F.; Figura, P.; Fiori, I.; Fishbach, M.; Fisher, R.âP.; Fittipaldi, R.; Fiumara, V.; Flaminio, R.; Floden, E.; Fong, H.; Font, J.âA.; Fornal, B.; Forsyth, P.âW.âF.; Franke, A.; Frasca, S.; Frasconi, F.; Frederick, C.; Freed, J.âP.; Frei, Z.; Freise, A.; Frey, R.; Fritschel, P.; Frolov, V.âV.; FronzĂ©, G.âG.; Fulda, P.; Fyffe, M.; Gabbard, H.âA.; Gadre, B.âU.; Gair, J.âR.; Gais, J.; Galaudage, S.; Gamba, R.; Ganapathy, D.; Ganguly, A.; Gaonkar, S.âG.; Garaventa, B.; GarcĂa-NĂșñez, C.; GarcĂa-QuirĂłs, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gayathri, V.; Gemme, G.; Gennai, A.; George, J.; Gerberding, O.; Gergely, L.; Gewecke, P.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, Shaon; Ghosh, Shrobana; Giacomazzo, B.; Giacoppo, L.; Giaime, J.âA.; Giardina, K.âD.; Gibson, D.âR.; Gier, C.; Giesler, M.; Giri, P.; Gissi, F.; Glanzer, J.; Gleckl, A.âE.; Godwin, P.; Goetz, E.; Goetz, R.; Gohlke, N.; Goncharov, B.; GonzĂĄlez, G.; Gopakumar, A.; Gosselin, M.; Gouaty, R.; Gould, D.âW.; Grace, B.; Grado, A.; Granata, M.; Granata, V.; Grant, A.; Gras, S.; Grassia, P.; Gray, C.; Gray, R.; Greco, G.; Green, A.âC.; Green, R.; Gretarsson, A.âM.; Gretarsson, E.âM.; Griffith, D.; Griffiths, W.; Griggs, H.âL.; Grignani, G.; Grimaldi, A.; Grimm, S.âJ.; Grote, H.; Grunewald, S.; Gruning, P.; Guerra, D.; Guidi, Gianluca; Guimaraes, A.âR.; GuixĂ©, G.; Gulati, H.âK.; Guo, H.-K.; Guo, Y.; Gupta, Anchal; Gupta, Anuradha; Gupta, P.; Gustafson, E.âK.; Gustafson, R.; Guzman, F.; Haegel, L.; Halim, O.; Hall, E.âD.; Hamilton, E.âZ.; Hammond, G.; Haney, M.; Hanks, J.; Hanna, C.; Hannam, M.âD.; Hannuksela, O.; Hansen, H.; Hansen, T.âJ.; Hanson, J.; Harder, T.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G.âM.; Harry, I.âW.; Hartwig, D.; Haskell, B.; Hasskew, R.âK.; Haster, C.-J.; Haughian, K.; Hayes, F.âJ.; Healy, J.; Heidmann, A.; Heidt, A.; Heintze, M.âC.; Heinze, J.; Heinzel, J.; Heitmann, H.; Hellman, F.; Hello, P.; Helmling-Cornell, A.âF.; Hemming, G.; Hendry, M.; Heng, I.âS.; Hennes, E.; Hennig, J.; Hennig, M.âH.; Hernandez, A.âG.; Vivanco, F. Hernandez; Heurs, M.; Hild, S.; Hill, P.; Hines, A.âS.; Hochheim, S.; Hofman, D.; Hohmann, J.âN.; Holcomb, D.âG.; Holland, N.âA.; Hollows, I.âJ.; Holmes, Z.âJ.; Holt, K.; Holz, D.âE.; Hopkins, P.; Hough, J.; Hourihane, S.; Howell, E.âJ.; Hoy, C.âG.; Hoyland, D.; Hreibi, A.; Hsu, Y.; Huang, Y.; HĂŒbner, M.âT.; Huddart, A.âD.; Hughey, B.; Hui, V.; Husa, S.; Huttner, S.âH.; Huxford, R.; Huynh-Dinh, T.; Idzkowski, B.; Iess, A.; Ingram, C.; Isi, M.; Isleif, K.; Iyer, B.âR.; JaberianHamedan, V.; Jacqmin, T.; Jadhav, S.âJ.; Jadhav, S.âP.; James, A.âL.; Jan, A.âZ.; Jani, K.; Janquart, J.; Janssens, K.; Janthalur, N.âN.; Jaranowski, P.; Jariwala, D.; Jaume, R.; Jenkins, A.âC.; Jenner, K.; Jeunon, M.; Jia, W.; Johns, G.âR.; Jones, A.âW.; Jones, D.âI.; Jones, J.âD.; Jones, P.; Jones, R.; Jonker, R.âJ.âG.; Ju, L.; Junker, J.; Juste, V.; Kalaghatgi, C.âV.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J.âB.; Kao, Y.; Kapadia, S.âJ.; Kapasi, D.âP.; Karat, S.; Karathanasis, C.; Karki, S.; Kashyap, R.; Kasprzack, M.; Kastaun, W.; Katsanevas, S.; Katsavounidis, E.; Katzman, W.; Kaur, T.; Kawabe, K.; KĂ©fĂ©lian, F.; Keitel, D.; Key, J.âS.; Khadka, S.; Khalili, F.âY.; Khan, S.; Khazanov, E.âA.; Khetan, N.; Khursheed, M.; Kijbunchoo, N.; Kim, C.; Kim, J.âC.; Kim, K.; Kim, W.âS.; Kim, Y.-M.; Kimball, C.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J.âS.; Kleybolte, L.; Klimenko, S.; Knee, A.âM.; Knowles, T.âD.; Knyazev, E.; Koch, P.; Koekoek, G.; Koley, S.; Kolitsidou, P.; Kolstein, M.; Komori, K.; Kondrashov, V.; Kontos, A.; Koper, N.; Korobko, M.; Kovalam, M.; Kozak, D.âB.; Kringel, V.; Krishnendu, N.âV.; KrĂłlak, A.; Kuehn, G.; Kuei, F.; Kuijer, P.; Kumar, A.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuns, K.; Kuwahara, S.; Lagabbe, P.; Laghi, D.; Lalande, E.; Lam, T.âL.; Lamberts, A.; Landry, M.; Lane, B.âB.; Lang, R.âN.; Lange, J.; Lantz, B.; La Rosa, I.; Lartaux-Vollard, A.; Lasky, P.âD.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lecoeuche, Y.âK.; Lee, H.âM.; Lee, H.âW.; Lee, J.; Lee, K.; Lehmann, J.; LemaĂźtre, A.; Leroy, N.; Letendre, N.; Levesque, C.; Levin, Y.; Leviton, J.âN.; Leyde, K.; Li, A.âK.âY.; Li, B.; Li, J.; Li, T.âG.âF.; Li, X.; Linde, F.; Linker, S.âD.; Linley, J.âN.; Littenberg, T.âB.; Liu, J.; Liu, K.; Liu, X.; Llamas, F.; Llorens-Monteagudo, M.; Lo, R.âK.âL.; Lockwood, A.; London, L.âT.; Longo, A.; Lopez, D.; Portilla, M. Lopez; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lott, T.âP.; Lough, J.âD.; Lousto, C.âO.; Lovelace, G.; Lucaccioni, J.âF.; LĂŒck, H.; Lumaca, D.; Lundgren, A.âP.; Lynam, J.âE.; Macas, R.; MacInnis, M.; Macleod, D.âM.; MacMillan, I.âA.âO.; Macquet, A.; Hernandez, I. Magaña; MagazzĂč, C.; Magee, R.âM.; Maggiore, R.; Magnozzi, M.; Mahesh, S.; Majorana, E.; Makarem, C.; Maksimovic, I.; Maliakal, S.; Malik, A.; Man, N.; Mandic, V.; Mangano, V.; Mango, J.âL.; Mansell, G.âL.; Manske, M.; Mantovani, M.; Mapelli, M.; Marchesoni, F.; Marion, F.; Mark, Z.; MĂĄrka, S.; MĂĄrka, Z.; Markakis, C.; Markosyan, A.âS.; Markowitz, A.; Maros, E.; Marquina, A.; Marsat, S.; Martelli, F.; Martin, I.âW.; Martin, R.âM.; Martinez, M.; Martinez, V.âA.; Martinez, V.; Martinovic, K.; Martynov, D.âV.; Marx, E.âJ.; Masalehdan, H.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T.âJ.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Mateu-Lucena, M.; Matichard, F.; Matiushechkina, M.; Mavalvala, N.; McCann, J.âJ.; McCarthy, R.; McClelland, D.âE.; McClincy, P.âK.; McCormick, S.; McCuller, L.; McGhee, G.âI.; McGuire, S.âC.; McIsaac, C.; McIver, J.; McRae, T.; McWilliams, S.âT.; Meacher, D.; Mehmet, M.; Mehta, A.âK.; Meijer, Q.; Melatos, A.; Melchor, D.âA.; Mendell, G.; Menendez-Vazquez, A.; Menoni, C.âS.; Mercer, R.âA.; Mereni, L.; Merfeld, K.; Merilh, E.âL.; Merritt, J.âD.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P.âM.; Meylahn, F.; Mhaske, A.; Miani, A.; Miao, H.; Michaloliakos, I.; Michel, C.; Middleton, H.; Milano, L.; Miller, A.; Miller, A.âL.; Miller, B.; Millhouse, M.; Mills, J.âC.; Milotti, E.; Minazzoli, O.; Minenkov, Y.; Mir, Ll.âM.; Miravet-TenĂ©s, M.; Mishra, C.; Mishra, T.; Mistry, T.; Mitra, S.; Mitrofanov, V.âP.; Mitselmakher, G.; Mittleman, R.; Mo, Geoffrey; Moguel, E.; Mogushi, K.; Mohapatra, S.âR.âP.; Mohite, S.âR.; Molina, I.; Molina-Ruiz, M.; Mondin, M.; Montani, M.; Moore, C.âJ.; Moraru, D.; Morawski, F.; More, A.; Moreno, C.; Moreno, G.; Morisaki, S.; Mours, B.; Mow-Lowry, C.âM.; Mozzon, S.; Muciaccia, F.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, Soma; Mukherjee, Subroto; Mukherjee, Suvodip; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E.âA.; Murray, P.âG.; Musenich, R.; Muusse, S.; Nadji, S.âL.; Nagar, A.; Napolano, V.; Nardecchia, I.; Naticchioni, L.; Nayak, B.; Nayak, R.âK.; Neil, B.âF.; Neilson, J.; Nelemans, G.; Nelson, T.âJ.âN.; Nery, M.; Neubauer, P.; Neunzert, A.; Ng, K.âY.; Ng, S.âW.âS.; Nguyen, C.; Nguyen, P.; Nguyen, T.; Nichols, S.âA.; Nissanke, S.; Nitoglia, E.; Nocera, F.; Norman, M.; North, C.; Nuttall, L.âK.; Oberling, J.; OâBrien, B.âD.; OâDell, J.; Oelker, E.; Oganesyan, G.; Oh, J.âJ.; Oh, S.âH.; Ohme, F.; Ohta, H.; Okada, M.âA.; Olivetto, C.; Oram, R.; OâReilly, B.; Ormiston, R.âG.; Ormsby, N.âD.; Ortega, L.âF.; OâShaughnessy, R.; OâShea, E.; Ossokine, S.; Osthelder, C.; Ottaway, D.âJ.; Overmier, H.; Pace, A.âE.; Pagano, G.; Page, M.âA.; Pagliaroli, G.; Pai, A.; Pai, S.âA.; Palamos, J.âR.; Palashov, O.; Palomba, C.; Pan, H.; Panda, P.âK.; Pang, P.âT.âH.; Pankow, C.; Pannarale, F.; Pant, B.âC.; Panther, F.âH.; Paoletti, F.; Paoli, A.; Paolone, A.; Park, H.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, M.; Pathak, M.; Patricelli, B.; Patron, A.âS.; Paul, S.; Payne, E.; Pedraza, M.; Pegoraro, M.; Pele, A.; Penn, S.; Perego, A.; Pereira, A.; Pereira, T.; Perez, C.âJ.; PĂ©rigois, C.; Perkins, C.âC.; Perreca, A.; PerriĂšs, S.; Petermann, J.; Petterson, D.; Pfeiffer, H.âP.; Pham, K.âA.; Phukon, K.âS.; Piccinni, O.âJ.; Pichot, M.; Piendibene, M.; Piergiovanni, F.; Pierini, L.; Pierro, V.; Pillant, G.; Pillas, M.; Pilo, F.; Pinard, L.; Pinto, I.âM.; Pinto, M.; Piotrzkowski, K.; Pirello, M.; Pitkin, M.âD.; Placidi, E.; Planas, L.; Plastino, W.; Pluchar, C.; Poggiani, R.; Polini, E.; Pong, D.âY.âT.; Ponrathnam, S.; Popolizio, P.; Porter, E.âK.; Poulton, R.; Powell, J.; Pracchia, M.; Pradier, T.; Prajapati, A.âK.; Prasai, K.; Prasanna, R.; Pratten, G.; Principe, M.; Prodi, G.âA.; Prokhorov, L.; Prosposito, P.; Prudenzi, L.; Puecher, A.; Punturo, M.; Puosi, F.; Puppo, P.; PĂŒrrer, M.; Qi, H.; Quetschke, V.; Quitzow-James, R.; Raab, F.âJ.; Raaijmakers, G.; Radkins, H.; Radulesco, N.; Raffai, P.; Rail, S.âX.; Raja, S.; Rajan, C.; Ramirez, K.âE.; Ramirez, T.âD.; Ramos-Buades, A.; Rana, J.; Rapagnani, P.; Rapol, U.âD.; Ray, A.; Raymond, V.; Raza, N.; Razzano, M.; Read, J.; Rees, L.âA.; Regimbau, T.; Rei, L.; Reid, S.; Reid, S.âW.; Reitze, D.âH.; Relton, P.; Renzini, A.; Rettegno, P.; Rezac, M.; Ricci, F.; Richards, D.; Richardson, J.âW.; Richardson, L.; Riemenschneider, G.; Riles, K.; Rinaldi, S.; Rink, K.; Rizzo, M.; Robertson, N.âA.; Robie, R.; Robinet, F.; Rocchi, A.; Rodriguez, S.; Rolland, L.; Rollins, J.âG.; Romanelli, M.; Romano, R.; Romel, C.âL.; Romero-RodrĂguez, A.; Romero-Shaw, I.âM.; Romie, J.âH.; Ronchini, S.; Rosa, L.; Rose, C.âA.; RosiĆska, D.; Ross, M.âP.; Rowan, S.; Rowlinson, S.âJ.; Roy, S.; Roy, Santosh; Roy, Soumen; Rozza, D.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadiq, J.; Sakellariadou, M.; Salafia, O.âS.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sanchez, E.âJ.; Sanchez, J.âH.; Sanchez, L.âE.; Sanchis-Gual, N.; Sanders, J.âR.; Sanuy, A.; Saravanan, T.âR.; Sarin, N.; Sassolas, B.; Satari, H.; Sathyaprakash, B.âS.; Sauter, O.; Savage, R.âL.; Sawant, D.; Sawant, H.âL.; Sayah, S.; Schaetzl, D.; Scheel, M.; Scheuer, J.; Schiworski, M.; Schmidt, P.; Schmidt, S.; Schnabel, R.; Schneewind, M.; Schofield, R.âM.âS.; Schönbeck, A.; Schulte, B.âW.; Schutz, B.âF.; Schwartz, E.; Scott, J.; Scott, S.âM.; Seglar-Arroyo, M.; Sellers, D.; Sengupta, A.âS.; Sentenac, D.; Seo, E.âG.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaffer, T.; Shahriar, M.âS.; Shams, B.; Sharma, A.; Sharma, P.; Shawhan, P.; Shcheblanov, N.âS.; Shikauchi, M.; Shoemaker, D.âH.; Shoemaker, D.âM.; ShyamSundar, S.; Sieniawska, M.; Sigg, D.; Singer, L.âP.; Singh, D.; Singh, N.; Singha, A.; Sintes, A.âM.; Sipala, V.; Skliris, V.; Slagmolen, B.âJ.âJ.; Slaven-Blair, T.âJ.; Smetana, J.; Smith, J.âR.; Smith, R.âJ.âE.; Soldateschi, J.; Somala, S.âN.; Son, E.âJ.; Soni, K.; Soni, S.; Sordini, V.; Sorrentino, F.; Sorrentino, N.; Soulard, R.; Souradeep, T.; Sowell, E.; Spagnuolo, V.; Spencer, A.âP.; Spera, M.; Srinivasan, R.; Srivastava, A.âK.; Srivastava, V.; Staats, K.; Stachie, C.; Steer, D.âA.; Steinlechner, J.; Steinlechner, S.; Stops, D.âJ.; Stover, M.; Strain, K.âA.; Strang, L.âC.; Stratta, G.; Strunk, A.; Sturani, R.; Stuver, A.âL.; Sudhagar, S.; Sudhir, V.; Suh, H.âG.; Summerscales, T.âZ.; Sun, H.; Sun, L.; Sunil, S.; Sur, A.; Suresh, J.; Sutton, P.âJ.; Swinkels, B.âL.; SzczepaĆczyk, M.âJ.; Szewczyk, P.; Tacca, M.; Tait, S.âC.; Talbot, C.âJ.; Talbot, C.; Tanasijczuk, A.âJ.; Tanner, D.âB.; Tao, D.; Tao, L.; MartĂn, E.âN. Tapia San; Taranto, C.; Tasson, J.âD.; Tenorio, R.; Terhune, J.âE.; Terkowski, L.; Thirugnanasambandam, M.âP.; Thomas, M.; Thomas, P.; Thompson, J.âE.; Thondapu, S.âR.; Thorne, K.âA.; Thrane, E.; Tiwari, Shubhanshu; Tiwari, Srishti; Tiwari, V.; Toivonen, A.âM.; Toland, K.; Tolley, A.âE.; Tonelli, M.; Torres-FornĂ©, A.; Torrie, C.âI.; e Melo, I. Tosta; TöyrĂ€, D.; Trapananti, A.; Travasso, F.; Traylor, G.; Trevor, M.; Tringali, M.âC.; Tripathee, A.; Troiano, L.; Trovato, A.; Trozzo, L.; Trudeau, R.âJ.; Tsai, D.âS.; Tsai, D.; Tsang, K.âW.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tsutsui, T.; Turbang, K.; Turconi, M.; Ubhi, A.âS.; Udall, R.âP.; Ueno, K.; Unnikrishnan, C.âS.; Urban, A.âL.; Utina, A.; Vahlbruch, H.; Vajente, G.; Vajpeyi, A.; Valdes, G.; Valentini, M.; Valsan, V.; van Bakel, N.; van Beuzekom, M.; van den Brand, J.âF.âJ.; Van Den Broeck, C.; Vander-Hyde, D.âC.; van der Schaaf, L.; van Heijningen, J.âV.; Vanosky, J.; van Remortel, N.; Vardaro, M.; Vargas, A.âF.; Varma, V.; VasĂșth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.âJ.; Venneberg, J.; Venugopalan, G.; Verkindt, D.; Verma, P.; Verma, Y.; Veske, D.; Vetrano, F.; Vicere', Andrea; Vidyant, S.; Viets, A.âD.; Vijaykumar, A.; Villa-Ortega, V.; Vinet, J.-Y.; Virtuoso, A.; Vitale, S.; Vo, T.; Vocca, H.; von Reis, E.âR.âG.; von Wrangel, J.âS.âA.; Vorvick, C.; Vyatchanin, S.âP.; Wade, L.âE.; Wade, M.; Wagner, K.âJ.; Walet, R.âC.; Walker, M.; Wallace, G.âS.; Wallace, L.; Walsh, S.; Wang, J.âZ.; Wang, W.âH.; Ward, R.âL.; Warner, J.; Was, M.; Washington, N.âY.; Watchi, J.; Weaver, B.; Webster, S.âA.; Weinert, M.; Weinstein, A.âJ.; Weiss, R.; Weldon, G.; Weller, C.âM.; Wellmann, F.; Wen, L.; WeĂels, P.; Wette, K.; Whelan, J.âT.; White, D.âD.; Whiting, B.âF.; Whittle, C.; Wilken, D.; Williams, D.; Williams, M.âJ.; Williamson, A.âR.; Willis, J.âL.; Willke, B.; Wilson, D.âJ.; Winkler, W.; Wipf, C.âC.; Wlodarczyk, T.; Woan, G.; Woehler, J.; Wofford, J.âK.; Wong, I.âC.âF.; Wu, D.âS.; Wysocki, D.âM.; Xiao, L.; Yamamoto, H.; Yang, F.âW.; Yang, L.; Yang, Yang; Yang, Z.; Yap, M.âJ.; Yeeles, D.âW.; Yelikar, A.âB.; Ying, M.; Yoo, J.; Yu, Hang; Yu, Haocun; ZadroĆŒny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, J.; Zhang, L.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhao, G.; Zhao, Yue; Zhou, R.; Zhou, Z.; Zhu, X.âJ.; Zimmerman, A.âB.; Zucker, M.âE.; Zweizig, J.Abbott, R.; Abbott, T. âD.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. âX.; Adya, V. âB.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. âD.; Aiello, L.; Ain, A.; Ajith, P.; Albanesi, S.; Allocca, A.; Altin, P. âA.; Amato, A.; Anand, C.; Anand, S.; Ananyeva, A.; Anderson, S. âB.; Anderson, W. âG.; Andrade, T.; Andres, N.; AndriÄ, T.; Angelova, S. âV.; Ansoldi, S.; Antelis, J. âM.; Antier, S.; Appert, S.; Arai, K.; Araya, M. âC.; Areeda, J. âS.; ArĂšne, M.; Arnaud, N.; Aronson, S. âM.; Arun, K. âG.; Asali, Y.; Ashton, G.; Assiduo, M.; Aston, S. âM.; Astone, P.; Aubin, F.; Austin, C.; Babak, S.; Badaracco, F.; Bader, M. âK. âM.; Badger, C.; Bae, S.; Baer, A. âM.; Bagnasco, S.; Bai, Y.; Baird, J.; Ball, M.; Ballardin, G.; Ballmer, S. âW.; Balsamo, A.; Baltus, G.; Banagiri, S.; Bankar, D.; Barayoga, J. âC.; Barbieri, C.; Barish, B. âC.; Barker, D.; Barneo, P.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. âA.; Bartos, I.; Bassiri, R.; Basti, A.; Bawaj, M.; Bayley, J. âC.; Baylor, A. âC.; Bazzan, M.; BĂ©csy, B.; Bedakihale, V. âM.; Bejger, M.; Belahcene, I.; Benedetto, V.; Beniwal, D.; Bennett, T. âF.; Bentley, J. âD.; Benyaala, M.; Bergamin, F.; Berger, B. âK.; Bernuzzi, S.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beveridge, D.; Bhandare, R.; Bhardwaj, U.; Bhattacharjee, D.; Bhaumik, S.; Bilenko, I. âA.; Billingsley, G.; Bini, S.; Birney, R.; Birnholtz, O.; Biscans, S.; Bischi, M.; Biscoveanu, S.; Bisht, A.; Biswas, B.; Bitossi,
The population of merging compact binaries inferred using gravitational waves through GWTC-3
We report on the population properties of 76 compact binary mergers detected with gravitational waves below a false alarm rate of 1 per year through GWTC-3. The catalog contains three classes of binary mergers: BBH, BNS, and NSBH mergers. We infer the BNS merger rate to be between 10 and 1700 and the NSBH merger rate to be between 7.8 and 140 , assuming a constant rate density versus comoving volume and taking the union of 90% credible intervals for methods used in this work. Accounting for the BBH merger rate to evolve with redshift, we find the BBH merger rate to be between 17.9 and 44 at a fiducial redshift (z=0.2). We obtain a broad neutron star mass distribution extending from to . We can confidently identify a rapid decrease in merger rate versus component mass between neutron star-like masses and black-hole-like masses, but there is no evidence that the merger rate increases again before 10 . We also find the BBH mass distribution has localized over- and under-densities relative to a power law distribution. While we continue to find the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above . The rate of BBH mergers is observed to increase with redshift at a rate proportional to with for . Observed black hole spins are small, with half of spin magnitudes below . We observe evidence of negative aligned spins in the population, and an increase in spin magnitude for systems with more unequal mass ratio
A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run
We present a search for dark photon dark matter that could couple to
gravitational-wave interferometers using data from Advanced LIGO and Virgo's
third observing run. To perform this analysis, we use two methods, one based on
cross-correlation of the strain channels in the two nearly aligned LIGO
detectors, and one that looks for excess power in the strain channels of the
LIGO and Virgo detectors. The excess power method optimizes the Fourier
Transform coherence time as a function of frequency, to account for the
expected signal width due to Doppler modulations. We do not find any evidence
of dark photon dark matter with a mass between eV/, which corresponds to frequencies between 10-2000
Hz, and therefore provide upper limits on the square of the minimum coupling of
dark photons to baryons, i.e. dark matter. For the
cross-correlation method, the best median constraint on the squared coupling is
at eV/; for the
other analysis, the best constraint is at eV/. These limits improve upon those obtained
in direct dark matter detection experiments by a factor of for
eV/, and are, in absolute terms, the
most stringent constraint so far in a large mass range eV/.Comment: 20 pages, 7 figure
Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo
Despite the growing number of confident binary black hole coalescences
observed through gravitational waves so far, the astrophysical origin of these
binaries remains uncertain. Orbital eccentricity is one of the clearest tracers
of binary formation channels. Identifying binary eccentricity, however, remains
challenging due to the limited availability of gravitational waveforms that
include effects of eccentricity. Here, we present observational results for a
waveform-independent search sensitive to eccentric black hole coalescences,
covering the third observing run (O3) of the LIGO and Virgo detectors. We
identified no new high-significance candidates beyond those that were already
identified with searches focusing on quasi-circular binaries. We determine the
sensitivity of our search to high-mass (total mass ) binaries
covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to
compare model predictions to search results. Assuming all detections are indeed
quasi-circular, for our fiducial population model, we place an upper limit for
the merger rate density of high-mass binaries with eccentricities at Gpc yr at 90\% confidence level.Comment: 24 pages, 5 figure
- âŠ