434 research outputs found

    Fourth European Conference on Infections in Leukaemia (ECIL-4): Guidelines for Diagnosis and Treatment of Human Respiratory Syncytial Virus, Parainfluenza Virus, Metapneumovirus, Rhinovirus, and Coronavirus

    Get PDF
    Respiratory viruses have been recognized as a significant cause of morbidity and mortality in patients with leukemia and those undergoing hematopoietic stem cell transplantation. The risk for lower respiratory tract infections and a fatal outcome appears to depend on the intrinsic virulence of the specific community-acquired respiratory virus as well as factors specific to the patient, the underlying disease, and its treatmen

    A Simulation-based Performance Evaluation of Heuristics for Dew Computing

    Get PDF
    The evolution of smartphones allows the continuous exploitation of computing resources. This increasingly applies also to distributed environments as exemplified through utilization of network router loads in edge computing and fog computing. Combining cloud computing and mobile smart devices in dew computing contexts enables new techniques for resource utilization, data collection and data processing. However, new challenges regarding job scheduling arise. Smartphones may be used in ad-hoc networks in this context, but their heterogeneity and energy usage must be considered. We propose novel heuristics for performance measuring of distributed computing systems integrated with mobile devices and compare them with previous heuristics in a simulation environment. Our results show an overall improvement in job completion and load balancing metrics compared to previous approaches. They highlight the usefulness of pursuing this research stream for aiming at industrial implementation and evaluation

    A task execution scheme for dew computing with state-of-the-art smartphones

    Get PDF
    The computing resources of today’s smartphones are underutilized most of the time. Using these resources could be highly beneficial in edge computing and fog computing contexts, for example, to support urban services for citizens. However, new challenges, especially regarding job scheduling, arise. Smartphones may form ad hoc networks, but individual devices highly differ in computational capabilities and (tolerable) energy usage. We take into account these particularities to validate a task execution scheme that relies on the computing power that clusters of mobile devices could provide. In this paper, we expand the study of several practical heuristics for job scheduling including execution scenarios with state-of-the-art smartphones. With the results of new simulated scenarios, we confirm previous findings and better comprehend the baseline approaches already proposed for the problem. This study also sheds some light on the capabilities of small-sized clusters comprising mid-range and low-end smartphones when the objective is to achieve real-time stream processing using Tensorflow object recognition models as edge jobs. Ultimately, we strive for industry applications to improve task scheduling for dew computing contexts. Heuristics such as ours plus supporting dew middleware could improve citizen participation by allowing a much wider use of dew computing resources, especially in urban contexts in order to help build smart cities.publishedVersio

    A Biased Review of Sociophysics

    Full text link
    Various aspects of recent sociophysics research are shortly reviewed: Schelling model as an example for lack of interdisciplinary cooperation, opinion dynamics, combat, and citation statistics as an example for strong interdisciplinarity.Comment: 16 pages for J. Stat. Phys. including 2 figures and numerous reference

    miR-19a-3p containing exosomes improve function of ischemic myocardium upon shock wave therapy

    Get PDF
    AIMS: As many current approaches for heart regeneration exert unfavorable side-effects, the induction of endogenous repair mechanisms in ischemic heart disease is of particular interest. Recently, exosomes carrying angiogenic miRNAs have been described to improve heart function. However, it remains challenging to stimulate specific release of reparative exosomes in ischemic myocardium. In the present study, we sought to test the hypothesis that the physical stimulus of shock wave therapy (SWT) causes the release of exosomes. We aimed to substantiate the pro-angiogenic impact of the released factors, to identify the nature of their cargo, and to test their efficacy in vivo supporting regeneration and recovery after myocardial ischemia. METHODS AND RESULTS: Mechanical stimulation of ischemic muscle via SWT caused extracellular vesicle (EV) release from endothelial cells both in vitro and in vivo. Characterization of EVs via electron microscopy, nanoparticle tracking analysis and flow cytometry revealed specific exosome morphology and size with presence of exosome markers CD 9, CD81 and CD63. Exosomes exhibited angiogenic properties activating protein kinase b (Akt) and extracellular-signal regulated kinase (ERK) resulting in enhanced endothelial tube formation and proliferation. A miRNA array and transcriptome analysis via next-generation sequencing were performed to specify exosome content. miR-19a-3p was identified as responsible cargo, antimir-19a-3p antagonized angiogenic exosome effects. Exosomes and target miRNA were injected intramyocardially in mice after left anterior descending artery (LAD) ligation. Exosomes resulted in improved vascularization, decreased myocardial fibrosis and increased left ventricular ejection fraction as shown by transthoracic echocardiography. CONCLUSIONS: The mechanical stimulus of SWT causes release of angiogenic exosomes. miR-19a-3p is the vesicular cargo responsible for the observed effects. Released exosomes induce angiogenesis, decrease myocardial fibrosis and improve left ventricular function after myocardial ischemia. Exosome release via SWT could develop an innovative approach for the regeneration of ischemic myocardium

    Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics

    Full text link
    The Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the time evolution of the order parameter in systems undergoing first-order phase transformations has been extended by Sekimoto to the level of two-point correlation functions. Here, this extended KJMA theory is applied to a kinetic Ising lattice-gas model, in which the elementary kinetic processes act on microscopic length and time scales. The theoretical framework is used to analyze data from extensive Monte Carlo simulations. The theory is inherently a mesoscopic continuum picture, and in principle it requires a large separation between the microscopic scales and the mesoscopic scales characteristic of the evolving two-phase structure. Nevertheless, we find excellent quantitative agreement with the simulations in a large parameter regime, extending remarkably far towards strong fields (large supersaturations) and correspondingly small nucleation barriers. The original KJMA theory permits direct measurement of the order parameter in the metastable phase, and using the extension to correlation functions one can also perform separate measurements of the nucleation rate and the average velocity of the convoluted interface between the metastable and stable phase regions. The values obtained for all three quantities are verified by other theoretical and computational methods. As these quantities are often difficult to measure directly during a process of phase transformation, data analysis using the extended KJMA theory may provide a useful experimental alternative.Comment: RevTex, 21 pages including 14 ps figures. Submitted to Phys. Rev. B. One misprint corrected in Eq.(C1
    corecore