245 research outputs found

    Evidence for a breakdown of the Isobaric Multiplet Mass Equation: A study of the A=35, T=3/2 isospin quartet

    Get PDF
    Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For 35K T1/2=178ms) to 46K (T1/2=105s) relative mass uncertainties of 2x10-8 and better have been achieved. The accurate mass determination of 35K (dm=0.54keV) has been exploited to test the Isobaric Multiplet Mass Equation (IMME) for the A=35, T=3/2 isospinquartet. The experimental results indicate a deviation from the generally adopted quadratic form.Comment: 8 pages, 4 figure

    Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K

    Get PDF
    The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.Comment: 5 pages, 5 figure

    Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    Full text link
    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data

    Electric and magnetic field optimization procedure for Penning trap mass spectrometers

    Full text link
    Significant systematic errors in high-precision Penning trap mass spectrometry can result from electric and magnetic field imperfections. An experimental procedure to minimize these uncertainties is presented for the on-line Penning trap mass spectrometer ISOLTRAP, located at ISOLDE/CERN. The deviations from the ideal magnetic and electric fields are probed by measuring the cyclotron frequency and the reduced cyclotron frequency, respectively, of stored ions as a function of the time between the ejection of ions from the preparation trap and their capture in the precision trap, which influences the energy of their axial motion. The correction parameters are adjusted to minimize the frequency shifts.Comment: 25 pages, 9 figure

    Transport and cooling of singly-charged noble gas ion beams

    Get PDF
    The transport and cooling of noble gas singly-charged ion beams by means of a Radio Frequency Quadrupole Cooler Buncher (RFQCB) have been studied at the LIMBE low energy beam line of the GANIL facility. Ions as light as 4He+^{4}He^+ have been cooled and stored before their extraction in bunches using H2H_2 as buffer gas. Bunches characteristics have been studied as a function of the parameters of the device. Sizeable transmissions of up to 10 % have been obtained. A detailed study of the lifetime of ions inside the buncher has been performed giving an estimate of the charge exchange cross-section. Results of a microscopic Monte-Carlo transport code show reasonable agreement with experimental data.Comment: 13 figure

    Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis

    Get PDF
    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.Comment: Link to online abstract: http://link.aps.org/doi/10.1103/PhysRevLett.106.12250

    Direct mass measurements beyond the proton drip-line

    Get PDF
    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about 71087\cdot 10^{-8}, nine of them for the first time. Four nuclides (144,145^{144, 145}Ho and 147,148^{147, 148}Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies

    High-accuracy mass measurements of neutron-rich Kr isotopes

    Get PDF
    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed

    Restoration of the N=82 Shell Gap from Direct Mass Measurements of 132,134^{132,134}Sn

    Get PDF
    A high-precision direct Penning trap mass measurement has revealed a 0.5-MeV deviation of the binding energy of 134^{134}Sn from the currently accepted value. The corrected mass assignment of this neutron-rich nuclide restores the neutron-shell gap at N=82, previously considered to be a case of “shell quenching.” In fact, the new shell gap value for the short-lived 132^{132}Sn is larger than that of the doubly-magic 48^{48}Ca which is stable. The N=82 shell gap has considerable impact on fission recycling during the rr process. More generally, the new finding has important consequences for microscopic mean-field theories which systematically deviate from the measured binding energies of closed-shell nuclides
    corecore