22 research outputs found

    Integration of maXs-type microcalorimeter detectors for high-resolution x-ray spectroscopy into the experimental environment at the CRYRING@ESR electron cooler

    Get PDF
    We report on the first integration of novel magnetic microcalorimeter detectors (MMCs), developed within SPARC (Stored Particles Atomic Physics Research Collaboration), into the experimental environment of storage rings at GSI6^6, Darmstadt, namely at the electron cooler of CRYRING@ESR. Two of these detector systems were positioned at the 0° and 180° view ports of the cooler section to obtain high-resolution x-ray spectra originating from a stored beam of hydrogen-like uranium interacting with the cooler electrons. While previous test measurements with microcalorimeters at the accelerator facility of GSI were conducted in the mode of well-established stand-alone operation, for the present experiment we implemented several notable modifications to exploit the full potential of this type of detector for precision x-ray spectroscopy of stored heavy ions. Among these are a new readout system compatible with the multi branch system data acquisition platform of GSI, the synchronization of a quasi-continuous energy calibration with the operation cycle of the accelerator facility, as well as the first exploitation of the maXs detectors\u27 time resolution to apply coincidence conditions for the detection of photons and charge-changed ions

    Integration of maXs-type microcalorimeter detectors for high-resolution x-ray spectroscopy into the experimental environment at the CRYRING@ESR electron cooler

    Get PDF
    We report on the first integration of novel magnetic microcalorimeter detectors (MMCs), developed within SPARC (Stored Particles Atomic Physics Research Collaboration), into the experimental environment of storage rings at GSI, Darmstadt, namely at the electron cooler of CRYRING@ESR. Two of these detector systems were positioned at the 0∘ and 180∘ view ports of the cooler section to obtain high-resolution x-ray spectra originating from a stored beam of hydrogen-like uranium interacting with the cooler electrons. While previous test measurements with microcalorimeters at the accelerator facility of GSI were conducted in the mode of well-established stand-alone operation, for the present experiment we implemented several notable modifications to exploit the full potential of this type of detector for precision x-ray spectroscopy of stored heavy ions. Among these are a new readout system compatible with the multi branch system data acquisition platform of GSI, the synchronization of a quasi-continuous energy calibration with the operation cycle of the accelerator facility, as well as the first exploitation of the maXs detectors\u27 time resolution to apply coincidence conditions for the detection of photons and charge-changed ions

    New test of modulated electron capture decay of hydrogen-like 142Pm ions: Precision measurement of purely exponential decay

    Get PDF
    An experiment addressing electron capture (EC) decay of hydrogen-like 142Pm60+ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7)s−1for automatic analysis and 0.0141(7)s−1for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4)

    Towards a fast calculator for the radiation characteristics of radiative recombination and radiative electron capture

    Get PDF
    Abstract The radiative capture of free electrons (radiative recombination) and bound electrons (radiative electron capture) are among the most important charge changing processes for fast, highly-charged ions. While total cross sections can be obtained by an approximate formula with reasonable accuracy, the estimation of angular distributions and polarization properties of the emitted radiation requires a fully relativistic treatment that is numerical expensive. Therefore we recently started the development of a fast calculator for these radiation characteristics. The program is based on a grid of rigorously calculated data points for free- electron capture into bare ions, between which interpolation is performed to obtain radiation characteristics for specific collision systems. Also capture into few-electron systems is taken into account in an approximate way. We present first results from this development

    Commissioning of a Si(Li) Compton polarimeter with improved energy resolution

    No full text
    On the basis of a double-side segmented Si(Li) crystal a new Compton polarimeter was developed within the SPARC collaboration. The new detector is equipped with a cryogenic first stage of the preamplifiers to improve the energy resolution compared to previous detectors with preamplifiers operating at room temperature. We present first results from a commissioning measurement of the new instrument at the ESR storage ring of GSI in Darmstadt, Germany and contrast it with the performance of an precursor polarimeter system

    Electric propulsion systems for small satellites: the low earth orbit mission perseus

    No full text
    The Institute of Space Systems, UniversitĂ€t Stuttgart, launched a “Small a Satellite Program” in 2002. The first two of the four planed small satellites, Flying Laptop and PERSEUS, are both Low Earth Orbit (LEO) missions. The third mission Cermit is a reentry satellite and the last of the small satellites − Lunar Mission BW1 − is a mission to the Moon. For this purpose, different propulsion systems are mandatory. The propulsion system for Lunar Mission BW1 will consist of two different types of thruster systems: a cluster of pulsed magnetoplasmadynamic (MPD) thrusters (SIMP-LEX) using solid polytetrafluoroethylene (PTFE) as propellant and a thermal arcjet thruster (TALOS) using gaseous ammonia as propellant. Both thruster systems are currently under development at IRS. They are planned to be tested on board the small satellite mission PERSEUS, one of the precursor missions of Lunar Mission BW1. The thruster systems have been investigated intensely in the past and, furthermore, optimization of the thrusters with respect to the mission requirements of Lunar Mission BW1 has been started. The test procedures for the technology demonstration on the PERSEUS satellite are under development at present

    Total projectile electron loss cross sections of U^{28+} ions in collisions with gaseous targets ranging from hydrogen to krypton

    Get PDF
    Beam lifetimes of stored U^{28+} ions with kinetic energies of 30 and 50  MeV/u, respectively, were measured in the experimental storage ring of the GSI accelerator facility. By using the internal gas target station of the experimental storage ring, it was possible to obtain total projectile electron loss cross sections for collisions with several gaseous targets ranging from hydrogen to krypton from the beam lifetime data. The resulting experimental cross sections are compared to predictions by two theoretical approaches, namely the CTMC method and a combination of the DEPOSIT code and the RICODE program
    corecore