757 research outputs found
Recommended from our members
The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGψ motif in the kinase domain.
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson's disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a "brake" that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2
The testis-specific Cα2 subunit of PKA is kinetically indistinguishable from the common Cα1 subunit of PKA
Background
The two variants of the α-form of the catalytic (C) subunit of protein kinase A (PKA), designated Cα1 and Cα2, are encoded by the PRKACA gene. Whereas Cα1 is ubiquitous, Cα2 expression is restricted to the sperm cell. Cα1 and Cα2 are encoded with different N-terminal domains. In Cα1 but not Cα2 the N-terminal end introduces three sites for posttranslational modifications which include myristylation at Gly1, Asp-specific deamidation at Asn2 and autophosphorylation at Ser10. Previous reports have implicated specific biological features correlating with these modifications on Cα1. Since Cα2 is not modified in the same way as Cα1 we tested if they have distinct biochemical activities that may be reflected in different biological properties.
Results
We show that Cα2 interacts with the two major forms of the regulatory subunit (R) of PKA, RI and RII, to form cAMP-sensitive PKAI and PKAII holoenzymes both in vitro and in vivo as is also the case with Cα1. Moreover, using Surface Plasmon Resonance (SPR), we show that the interaction patterns of the physiological inhibitors RI, RII and PKI were comparable for Cα2 and Cα1. This is also the case for their potency to inhibit catalytic activities of Cα2 and Cα1.
Conclusion
We conclude that the regulatory complexes formed with either Cα1 or Cα2, respectively, are indistinguishable
What doesn't kill you makes you stranger: Dipeptidyl peptidase-4 (CD26) proteolysis differentially modulates the activity of many peptide hormones and cytokines generating novel cryptic bioactive ligands
Dipeptidyl peptidase 4 (DPP4) is an exopeptidase found either on cell surfaces where it is highly regulated in terms of its expression and surface availability (CD26) or in a free/circulating soluble constitutively available and intrinsically active form. It is responsible for proteolytic cleavage of many peptide substrates. In this review we discuss the idea that DPP4-cleaved peptides are not necessarily inactivated, but rather can possess either a modified receptor selectivity, modified bioactivity, new antagonistic activity, or even a novel activity relative to the intact parent ligand.
We examine in detail five different major DPP4 substrates: glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), peptide tyrosine-tyrosine (PYY), and neuropeptide Y (NPY), and stromal derived factor 1 (SDF-1 aka CXCL12). We note that discussion of the cleaved forms of these five peptides are underrepresented in the research literature, and are both poorly investigated and poorly understood, representing a serious research literature gap. We believe they are understudied and misinterpreted as inactive due to several factors. This includes lack of accurate and specific quantification methods, sample collection techniques that are inherently inaccurate and inappropriate, and a general perception that DPP4 cleavage inactivates its ligand substrates.
Increasing evidence points towards many DPP4-cleaved ligands having their own bioactivity. For example, GLP-1 can work through a different receptor than GLP-1R, DPP4-cleaved GIP can function as a GIP receptor antagonist at high doses, and DPP4-cleaved PYY, NPY, and CXCL12 can have different receptor selectivity, or can bind novel, previously unrecognized receptors to their intact ligands, resulting in altered signaling and functionality. We believe that more rigorous research in this area could lead to a better understanding of DPP4’s role and the biological importance of the generation of novel cryptic ligands. This will also significantly impact our understanding of the clinical effects and side effects of DPP4-inhibitors as a class of anti-diabetic drugs that potentially have an expanding clinical relevance. This will be specifically relevant in targeting DPP4 substrate ligands involved in a variety of other major clinical acute and chronic injury/disease areas including inflammation, immunology, cardiology, stroke, musculoskeletal disease and injury, as well as cancer biology and tissue maintenance in aging
Chemical tools selectively target components of the PKA system
<p>Abstract</p> <p>Background</p> <p>In the eukaryotic cell the cAMP-dependent protein kinase (PKA) is a key enzyme in signal transduction and represents the main target of the second messenger cAMP. Here we describe the design, synthesis and characterisation of specifically tailored cAMP analogs which can be utilised as a tool for affinity enrichment and purification as well as for proteomics based analyses of cAMP binding proteins.</p> <p>Results</p> <p>Two sets of chemical binders were developed based on the phosphorothioate derivatives of cAMP, Sp-cAMPS and Rp-cAMPS acting as cAMP-agonists and -antagonists, respectively. These compounds were tested via direct surface plasmon resonance (SPR) analyses for their binding properties to PKA R-subunits and holoenzyme. Furthermore, these analogs were used in an affinity purification approach to analyse their binding and elution properties for the enrichment and improvement of cAMP binding proteins exemplified by the PKA R-subunits. As determined by SPR, all tested Sp-analogs provide valuable tools for affinity chromatography. However, Sp-8-AEA-cAMPS displayed (i) superior enrichment properties while maintaining low unspecific binding to other proteins in crude cell lysates, (ii) allowing mild elution conditions and (iii) providing the capability to efficiently purify all four isoforms of active PKA R-subunit in milligram quantities within 8 h. In a chemical proteomics approach both sets of binders, Rp- and Sp-cAMPS derivatives, can be employed. Whereas Sp-8-AEA-cAMPS preferentially binds free R-subunit, Rp-AHDAA-cAMPS, displaying antagonist properties, not only binds to the free PKA R-subunits but also to the intact PKA holoenzyme both from recombinant and endogenous sources.</p> <p>Conclusion</p> <p>In summary, all tested cAMP analogs were useful for their respective application as an affinity reagent which can enhance purification of cAMP binding proteins. Sp-8-AEA-cAMPS was considered the most efficient analog since Sp-8-AHA-cAMPS and Sp-2-AHA-cAMPS, demonstrated incomplete elution from the matrix, as well as retaining notable amounts of bound protein contaminants. Furthermore it could be demonstrated that an affinity resin based on Rp-8-AHDAA-cAMPS provides a valuable tool for chemical proteomics approaches.</p
Gad65 is recognized by t-cells, but not by antibodies from nod-mice
Since the 64kDa-protein glutamic acid decarboxylase (GAD) is one of the major autoantigens in T-cell mediated Type 1 diabetes, its relevance as a T-cell antigen needs to be clarified. After isolation of splenic T-cells from non-obese diabetic (NOD) mice, a useful model for human Type 1 diabetes, we found that these T-cells proliferate spontaneously when incubated with human GAD65, but only marginally after incubation with GAD67, both recombinated in the baculovirus system. No effect was observed with non-diabetic NOD mice or with T-cells from H-2 identical NON-NOD-H-2g7 control mice. It has been published previously that NOD mice develop autoantibodies against a 64kDa protein detected with mouse beta cells. In immunoprecipitation experiments with sera from the same NOD mice and 33S-methionine-labelled GAD, no autoantibody binding could be detected. We conclude firstly that GAD65 is an important T-cell antigen which is relevant early in the development of Type 1 diabetes and secondly that there is an antigenic epitope in the human GAD65 molecule recognized by NOD T-cells, but not by NOD autoantibodies precipitating conformational epitopes. Our results therefore provide further evidence that GAD65 is a T-cell antigen in NOD mice, being possibly also involved in very early processes leading to the development of human Type 1 diabetes
Covariant nucleon electromagnetic form factors from the Goldstone-boson-exchange quark model
We present a study of proton and neutron electromagnetic form factors for the
recently proposed Goldstone-boson-exchange constituent quark model. Results for
charge radii, magnetic moments, and electric as well as magnetic form factors
are reported. The calculations are performed in a covariant framework using the
point-form approach to relativistic quantum mechanics. All the predictions by
the Goldstone-boson-exchange constituent quark model are found in remarkably
good agreement with existing experimental data.Comment: LATEX, 10 pages, including 4 ps-figures, slightly modified, one
additional referenc
Extraction of electromagnetic neutron form factors through inclusive and exclusive polarized electron scattering on polarized 3He target
Inclusive 3He(e,e') and exclusive 3He(e,e'n) processes with polarized
electrons and 3He have been theoretically analyzed and values for the magnetic
and electric neutron form factors have been extracted. In both cases the form
factor values agree well with the ones extracted from processes on the
deuteron. Our results are based on Faddeev solutions, modern NN forces and
partially on the incorporation of mesonic exchange currents.Comment: 28 pages, 29 Postscript figure
Mechanism of Allosteric Inhibition in the Plasmodium falciparum cGMP-Dependent Protein Kinase
Most malaria deaths are caused by the protozoan parasite Plasmodium falciparum. Its life cycle is regulated by a cGMP-dependent protein kinase (PfPKG), whose inhibition is a promising antimalaria strategy. Allosteric kinase inhibitors, such as cGMP analogs, offer enhanced selectivity relative to competitive kinase inhibitors. However, the mechanisms underlying allosteric PfPKG inhibition are incompletely understood. Here, we show that 8-NBD-cGMP is an effective PfPKG antagonist. Using comparative NMR analyses of a key regulatory domain, PfD, in its apo, cGMP-bound, and cGMP analog–bound states, we elucidated its inhibition mechanism of action. Using NMR chemical shift analyses, molecular dynamics simulations, and site-directed mutagenesis, we show that 8-NBD-cGMP inhibits PfPKG not simply by reverting a two-state active versus inactive equilibrium, but by sampling also a distinct inactive “mixed” intermediate. Surface plasmon resonance indicates that the ability to stabilize a mixed intermediate provides a means to effectively inhibit PfPKG, without losing affinity for the cGMP analog. Our proposed model may facilitate the rational design of PfPKG-selective inhibitors for improved management of malaria
Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors
Nucleon electromagnetic form factor data (including recent data) is fitted
with models that respect the confinement and asymptotic freedom properties of
QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson
pole contributions and at high momentum transfer conform to the predictions of
perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also
include the width of the rho meson and the addition of higher mass vector meson
exchanges, but do not evolve into the explicit form of PQCD at high momentum
transfer. Different parameterizations of the GK model's hadronic form factors,
the effect of including the width of the rho meson and the addition of the next
(in mass) isospin 1 vector meson are considered. The quality of fit and the
consistency of the parameters select three of the combined HP/GK type models.
Projections are made to the higher momentum transfers which are relevant to
electron-deuteron experiments. The projections vary little for the preferred
models, removing much of the ambiguity in electron-nucleus scattering
predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure,
minor textual changes; email correspondence to [email protected]
- …