184 research outputs found

    Molecular Understanding of HIV-1 Latency

    Get PDF
    The introduction of highly active antiretroviral therapy (HAART) has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    The macrophage in HIV-1 infection: From activation to deactivation?

    Get PDF
    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease

    Dominance of variant A in Human Herpesvirus 6 viraemia after renal transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human herpesvirus 6 (HHV-6), mostly variant B reactivation in renal transplant patients has been published by other authors, but the pathogenetic role of HHV-6 variant A has not been clarified. Our aims were to examine the prevalence of HHV-6, to determine the variants, and to investigate the interaction between HHV-6 viraemia, human cytomegalovirus (HCMV) infection and clinical symptoms.</p> <p>Methods</p> <p>Variant-specific HHV-6 nested PCR and quantitative real-time PCR were used to examine blood samples from renal transplant patients and healthy blood donors for the presence and load of HHV-6 DNA and to determine the variants. Active HHV-6 infection was proved by RT-PCR, and active HCMV infection was diagnosed by pp65 antigenaemia test.</p> <p>Results</p> <p>HHV-6 viraemia was significantly more frequent in renal transplant patients compared to healthy blood donors (9/200 vs. 0/200; p = 0.004), while prevalence of HHV-6 latency was not significantly different (13/200 vs. 19/200; p > 0.05). Dominance of variant A was revealed in viraemias (8/9), and the frequency of HHV-6A was significantly higher in active infections compared with latency in renal transplant patients (8/9 vs. 2/13; p = 0.0015). Latency was established predominantly by HHV-6B both in renal transplant patients and in healthy blood donors (11/13 and 18/19). There was no statistical significant difference in occurrence of HCMV and HHV-6 viraemia in renal transplant patients (7/200 vs. 9/200). Statistical analysis did not reveal interaction between HHV-6 viraemia and clinical symptoms in our study.</p> <p>Conclusions</p> <p>Contrary to previous publications HHV-6A viraemia was found to be predominant in renal transplant patients. Frequency of variant A was significantly higher in cases of active infection then in latency.</p

    LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing

    Get PDF
    Microglial cells are the main HIV-1 targets in the central nervous system (CNS) and constitute an important reservoir of latently infected cells. Establishment and persistence of these reservoirs rely on the chromatin structure of the integrated proviruses. We have previously demonstrated that the cellular cofactor CTIP2 forces heterochromatin formation and HIV-1 gene silencing by recruiting HDAC and HMT activities at the integrated viral promoter. In the present work, we report that the histone demethylase LSD1 represses HIV-1 transcription and viral expression in a synergistic manner with CTIP2. We show that recruitment of LSD1 at the HIV-1 proximal promoter is associated with both H3K4me3 and H3K9me3 epigenetic marks. Finally, our data suggest that LSD1-induced H3K4 trimethylation is linked to hSET1 recruitment at the integrated provirus

    Inhibition of ER stress-mediated apoptosis in macrophages by nuclear-cytoplasmic relocalization of eEF1A by the HIV-1 Nef protein

    Get PDF
    HIV-1 Nef protein has key roles at almost all stages of the viral life cycle. We assessed the role of the Nef/eEF1A (eukaryotic translation elongation factor 1-alpha) complex in nucleocytoplasmic shuttling in primary human macrophages. Nuclear retention experiments and inhibition of the exportin-t (Exp-t) pathway suggested that cytoplasmic relocalization of eEF1A, mediated by Exp-t, occurs in Nef-treated monocyte-derived macrophages (MDMs). We observed the presence of tRNA in the Nef/eEF1A complexes. Nucleocytoplasmic relocalization of the Nef/eEF1A complexes prevented stress-induced apoptosis of MDMs treated with brefeldin-A. Blockade of stress-induced apoptosis of MDMs treated with HIV-1 Nef resulted from enhanced nucleocytoplasmic transport of eEF1A with decreased release of mitochondrial cytochrome c, and from increased tRNA binding to cytochrome c, ultimately leading to an inhibition of caspase activation. Our results indicate that HIV-1 Nef, through the nucleocytoplasmic relocalization of eEF1A and tRNAs, enhances resistance to stress-induced apoptosis in primary human macrophages
    corecore