9 research outputs found

    Architecture of North Atlantic Contourite Drifts Modified by Transient Circulation of the Icelandic Mantle Plume

    Get PDF
    Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulation

    Variable water input controls evolution of the Lesser Antilles volcanic arc

    Get PDF
    Oceanic lithosphere carries volatiles, notably water, into the mantle through subduction at convergent plate boundaries. This subducted water exercises control on the production of magma, earthquakes, formation of continental crust and mineral resources. Identifying different potential fluid sources (sediments, crust and mantle lithosphere) and tracing fluids from their release to the surface has proved challenging1. Atlantic subduction zones are a valuable endmember when studying this deep water cycle because hydration in Atlantic lithosphere, produced by slow spreading, is expected to be highly non-uniform2. Here, as part of a multi-disciplinary project in the Lesser Antilles volcanic arc3, we studied boron trace element and isotopic fingerprints of melt inclusions. These reveal that serpentine—that is, hydrated mantle rather than crust or sediments—is a dominant supplier of subducted water to the central arc. This serpentine is most likely to reside in a set of major fracture zones subducted beneath the central arc over approximately the past ten million years. The current dehydration of these fracture zones coincides with the current locations of the highest rates of earthquakes and prominent low shear velocities, whereas the preceding history of dehydration is consistent with the locations of higher volcanic productivity and thicker arc crust. These combined geochemical and geophysical data indicate that the structure and hydration of the subducted plate are directly connected to the evolution of the arc and its associated seismic and volcanic hazards

    Mapping geologic features onto subducted slabs

    Get PDF
    Estimating the location of geologic and tectonic features on a subducting plate is important for interpreting their spatial relationships with other observables including seismicity, seismic velocity and attenuation anomalies, and the location of ore deposits and arc volcanism in the over-riding plate. Here we present two methods for estimating the location of predictable features such as seamounts, ridges and fracture zones on the slab. One uses kinematic reconstructions of plate motions, and the other uses multidimensional scaling to flatten the slab onto the surface of the Earth. We demonstrate the methods using synthetic examples and also using the test case of fracture zones entering the Lesser Antilles subduction zone. The two methods produce results that are in good agreement with each other in both the synthetic and real examples. In the Lesser Antilles, the subducted fracture zones trend northwards of the surface projections. The two methods begin to diverge in regions where the multidimensional scaling method has its greatest likely error. Wider application of these methods may help to establish spatial correlations globally

    Subduction history of the Caribbean from upper-mantle seismic imaging and plate reconstruction

    Get PDF
    The margins of the Caribbean and associated hazards and resources have been shaped by a poorly understood history of subduction. Using new data, we improve teleseismic P-wave imaging of the eastern Caribbean upper mantle and compare identified subducted-plate fragments with trench locations predicted from plate reconstruction. This shows that material at 700–1200 km depth below South America derives from 90–115 Myr old westward subduction, initiated prior to Caribbean Large-Igneous-Province volcanism. At shallower depths, an accumulation of subducted material is attributed to Great Arc of the Caribbean subduction as it evolved over the past 70 Ma. We interpret gaps in these subducted-plate anomalies as: a plate window and tear along the subducted Proto-Caribbean ridge; tearing along subducted fracture zones, and subduction of a volatile-rich boundary between Proto-Caribbean and Atlantic domains. Phases of back-arc spreading and arc jumps correlate with changes in age, and hence buoyancy, of the subducting plate

    Wide‐Angle Seismic Imaging of Two Modes of Crustal Accretion in Mature Atlantic Ocean Crust

    Get PDF
    We present a high‐resolution 2‐D P‐wave velocity model from a 225‐km‐long active seismic profile, collected over ~60–75 Ma central Atlantic crust. The profile crosses five ridge segments separated by a transform and three nontransform offsets. All ridge discontinuities share similar primary characteristics, independent of the offset. We identify two types of crustal segment. The first displays a classic two‐layer velocity structure with a high gradient Layer 2 (~0.9 s−1) above a lower gradient Layer 3 (0.2 s−1). Here, PmP coincides with the 7.5 km s−1 contour, and velocity increases to >7.8 km s−1 within 1 km below. We interpret these segments as magmatically robust, with PmP representing a petrological boundary between crust and mantle. The second has a reduced contrast in velocity gradient between the upper and lower crust and PmP shallower than the 7.5 km s−1 contour. We interpret these segments as tectonically dominated, with PmP representing a serpentinized (alteration) front. While velocity‐depth profiles fit within previous envelopes for slow‐spreading crust, our results suggest that such generalizations give a misleading impression of uniformity. We estimate that the two crustal styles are present in equal proportions on the floor of the Atlantic. Within two tectonically dominated segments, we make the first wide‐angle seismic identifications of buried oceanic core complexes in mature (>20 Ma) Atlantic Ocean crust. They have a ~20‐km‐wide “domal” morphology with shallow basement and increased upper crustal velocities. We interpret their midcrustal seismic velocity inversions as alteration and rock‐type assemblage contrasts across crustal‐scale detachment faults
    corecore