1,173 research outputs found

    Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds

    Get PDF
    Star formation within the Central Molecular Zone (CMZ) may be intimately linked to the orbital dynamics of the gas. Recent models suggest that star formation within the dust ridge molecular clouds (from G0.253+0.016 to Sgr B2) follows an evolutionary time sequence, triggered by tidal compression during their preceding pericentre passage. Given that these clouds are the most likely precursors to a generation of massive stars and extreme star clusters, this scenario would have profound implications for constraining the time-evolution of star formation. In this Letter, we search for the initial conditions of the protocluster clouds, focusing on the kinematics of gas situated upstream from pericentre. We observe a highly-regular corrugated velocity field in {l,vLSR}\{l,\,v_{\rm LSR}\} space, with amplitude and wavelength A=3.7±0.1A=3.7\,\pm\,0.1 kms1^{-1} and λvel,i=22.5±0.1\lambda_{\rm vel, i}=22.5\,\pm\,0.1 pc, respectively. The extremes in velocity correlate with a series of massive (104\sim10^{4}M_{\odot}) and compact (Req2R_{\rm eq}\sim2 pc), quasi-regularly spaced (8\sim8 pc), molecular clouds. The corrugation wavelength and cloud separation closely agree with the predicted Toomre (17\sim17 pc) and Jeans (6\sim6 pc) lengths, respectively. We conclude that gravitational instabilities are driving the condensation of molecular clouds within the Galactic Centre gas stream. Furthermore, we speculate these seeds are the historical analogue of the dust-ridge molecular clouds, representing the initial conditions of star and cluster formation in the CMZ

    Gas Kinematics and Excitation in the Filamentary IRDC G035.39-00.33

    Full text link
    Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at the early stages of their evolution is essential to establish the dynamical imprints of such collisions, and to infer the processes involved in their formation. We present multi-transition 13CO and C18O maps toward the IRDC G035.39-00.33, believed to be at the earliest stages of evolution. The 13CO and C18O gas is distributed in three filaments (Filaments 1, 2 and 3), where the most massive cores are preferentially found at the intersecting regions between them. The filaments have a similar kinematic structure with smooth velocity gradients of ~0.4-0.8 km s-1 pc-1. Several scenarios are proposed to explain these gradients, including cloud rotation, gas accretion along the filaments, global gravitational collapse, and unresolved sub-filament structures. These results are complemented by HCO+, HNC, H13CO+ and HN13C single-pointing data to search for gas infall signatures. The 13CO and C18O gas motions are supersonic across G035.39-00.33, with the emission showing broader linewidths toward the edges of the IRDC. This could be due to energy dissipation at the densest regions in the cloud. The average H2 densities are ~5000-7000 cm-3, with Filaments 2 and 3 being denser and more massive than Filament 1. The C18O data unveils three regions with high CO depletion factors (f_D~5-12), similar to those found in massive starless cores.Comment: 20 pages, 14 figures, 6 tables, accepted for publication in MNRA

    Re-introduction of structurally complex wood jams promotes channel and habitat recovery from overwidening: Implications for river conservation

    Get PDF
    Copyright © 2017 John Wiley & Sons, Ltd. Large wood is a powerful geomorphic agent in rivers, providing important habitat functions for a range of aquatic organisms, but has been subject to a long history of removal. Internationally, approaches to river restoration are increasingly incorporating large wood features, but generally favour simple flow deflectors (e.g. single logs, stripped of branches and anchored in place) over more complex structures that more accurately mimic natural wood jams. This paper explores channel response to wood-based restoration of an overwidened lowland chalk stream that incorporated whole felled trees. Hydraulics, sediment, topography and vegetation data were assessed for a 3year period for two restored reaches: an upstream reach where pre-restoration baseline data were obtained, and a downstream reach restored before data collection. Where pre-restoration data were available, the introduction of wood jams generated sediment deposition within jams leading to the development of vegetated marginal ‘benches’ and bed scour in adjacent areas of flow convergence. Patterns were less clear in the downstream reach, where restoration design was less ambitious and outcomes may have been affected by subsequent restoration work upstream. The results indicate that reintroduction of large wood (whole trees), can promote channel and habitat recovery from overwidening in lowland rivers, creating important ecological benefits through the provision of structurally complex marginal habitat and associated food resources. Longer-term assessments are required to establish whether the trajectories of change are persistent. The work emphasizes the effectiveness of restoration approaches that aim to ‘work with nature’. The ambitious design, incorporating structurally complex wood jams, was also low-cost, using materials available from the river corridor (existing riparian trees). Furthermore, ecosystem engineering effects were amplified by the colonization of wood jams by aquatic vegetation. The approach should, therefore, be transferable to other lowland rivers, subject to wider catchment constraints

    High-frequency urban measurements of molecular hydrogen and carbon monoxide in the United Kingdom

    Get PDF
    High-frequency measurements of atmospheric molecular hydrogen (H<sub>2</sub>) and carbon monoxide (CO) were made at an urban site in the United Kingdom (UK) from mid-December, 2008 until early March, 2009. Very few measurements of H<sub>2</sub> exist in the urban environment, particularly within the UK, but are an essential component in the assessment of anthropogenic emissions of H<sub>2</sub> and to a certain extent CO. These data provide detailed information on urban time-series, diurnal cycles as well as sources and sinks of both H<sub>2</sub> and CO at urban locations. High-frequency data were found to be strongly influenced by local meteorological conditions of wind speed and temperature. Diurnal cycles were found to follow transport frequency very closely due to the sites proximity to major carriageways, consequently a strong correlation was found between H<sub>2</sub> and CO mole fractions. Background subtracted mean and rush hour molar H<sub>2</sub>/CO emission ratios of 0.53±0.08 and 0.57±0.06 respectively, were calculated from linear fitting of data. The scatter plot of all H<sub>2</sub> and CO data displayed an unusual two population pattern, thought to be associated with a large industrial area 85 km to the west of the site. However, the definitive source of this two branch pattern could not be fully elucidated. H<sub>2</sub> emissions from transport in the UK were estimated to be 188±39 Gg H<sub>2</sub>/yr, with 8.1±2.3 Tg/yr of H<sub>2</sub> produced from vehicle emissions globally. H<sub>2</sub> and CO deposition velocities were calculated during stable night-time inversion events when a clear decay of both species was observed. CO was found to have a much higher deposition velocity than H<sub>2</sub>, 1.3±0.8×10<sup>−3</sup> and 2.2±1.5×10<sup>−4</sup> m s<sup>−1</sup> (1σ) respectively, going against the law of molecular diffusivity. The source of this unusual result was investigated, however no conclusive explanation was found for increased loss of CO over H<sub>2</sub> during stable night time inversion events

    GAUSSPY+: A fully automated Gaussian decomposition package for emission line spectra

    Get PDF
    Our understanding of the dynamics of the interstellar medium is informed by the study of the detailed velocity structure of emission line observations. One approach to study the velocity structure is to decompose the spectra into individual velocity components; this leads to a description of the data set that is significantly reduced in complexity. However, this decomposition requires full automation lest it become prohibitive for large data sets, such as Galactic plane surveys. We developed GAUSSPY+, a fully automated Gaussian decomposition package that can be applied to emission line data sets, especially large surveys of HI and isotopologues of CO. We built our package upon the existing GAUSSPY algorithm and significantly improved its performance for noisy data. New functionalities of GAUSSPY+ include: (i) automated preparatory steps, such as an accurate noise estimation, which can also be used as stand-alone applications; (ii) an improved fitting routine; (iii) an automated spatial refitting routine that can add spatial coherence to the decomposition results by refitting spectra based on neighbouring fit solutions. We thoroughly tested the performance of GAUSSPY+ on synthetic spectra and a test field from the Galactic Ring Survey. We found that GAUSSPY+ can deal with cases of complex emission and even low to moderate signal-to-noise values
    corecore