
GAUSSPY+: A fully automated Gaussian decomposition package for
emission line spectra

Downloaded from: https://research.chalmers.se, 2020-01-17 16:20 UTC

Citation for the original published paper (version of record):
Riener, M., Kainulainen, J., Henshaw, J. et al (2019)
GAUSSPY+: A fully automated Gaussian decomposition package for emission line spectra
Astronomy and Astrophysics, 628
http://dx.doi.org/10.1051/0004-6361/201935519

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

A&A 628, A78 (2019)
https://doi.org/10.1051/0004-6361/201935519
©M. Riener et al. 2019

Astronomy
&Astrophysics

GaussPy+: A fully automated Gaussian decomposition package for
emission line spectra?

M. Riener1,??, J. Kainulainen1,2, J. D. Henshaw1, J. H. Orkisz2, C. E. Murray3,???, and H. Beuther1

1 Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
e-mail: riener@mpia.de

2 Chalmers University of Technology, Department of Space, Earth and Environment, 412 93 Gothenburg, Sweden
3 Department of Physics & Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA

Received 22 March 2019 / Accepted 25 June 2019

ABSTRACT

Our understanding of the dynamics of the interstellar medium is informed by the study of the detailed velocity structure of emission
line observations. One approach to study the velocity structure is to decompose the spectra into individual velocity components; this
leads to a description of the data set that is significantly reduced in complexity. However, this decomposition requires full automation
lest it become prohibitive for large data sets, such as Galactic plane surveys. We developed GaussPy+, a fully automated Gaussian
decomposition package that can be applied to emission line data sets, especially large surveys of HI and isotopologues of CO. We
built our package upon the existing GaussPy algorithm and significantly improved its performance for noisy data. New functionalities
of GaussPy+ include: (i) automated preparatory steps, such as an accurate noise estimation, which can also be used as stand-alone
applications; (ii) an improved fitting routine; (iii) an automated spatial refitting routine that can add spatial coherence to the decompo-
sition results by refitting spectra based on neighbouring fit solutions. We thoroughly tested the performance of GaussPy+ on synthetic
spectra and a test field from the Galactic Ring Survey. We found that GaussPy+ can deal with cases of complex emission and even
low to moderate signal-to-noise values.

Key words. methods: data analysis – radio lines: general – ISM: kinematics and dynamics – ISM: lines and bands

1. Introduction

Observations of emission lines are of fundamental importance
in radio astronomy. Starting with the first detections of neu-
tral hydrogen (HI) via the 21 cm line at 1420.4 MHz by Ewen
& Purcell (1951) and the first detection of interstellar carbon
monoxide (CO) in the Orion nebula by Wilson et al. (1970), the
study of emission lines at radio wavelengths has led to ground-
breaking astrophysical insights. Our knowledge about the inter-
stellar medium (ISM) is in large part shaped by observations of
the emission of its gas molecules. In particular, we can use the
radial velocity – corresponding to Doppler shifts of the emission
line with respect to its rest frequency – to gain information about
the kinematics and dynamics of the gas.

In our Milky Way, large Galactic surveys of HI (e.g. Stil et al.
2006; Murray et al. 2015; Beuther et al. 2016) and isotopologues
of CO (e.g. Dame et al. 2001; Jackson et al. 2006; Dempsey
et al. 2013; Barnes et al. 2015; Rigby et al. 2016; Umemoto
et al. 2017; Schuller et al. 2017; Su et al. 2019) have been used,
for example, to study Galactic structure (e.g. Dame et al. 2001;
Nakanishi & Sofue 2006) and construct catalogues of molec-
ular clouds and clumps (e.g. Rathborne et al. 2009; Miville-
Deschênes et al. 2017; Colombo et al. 2019). Such studies are
usually more focused on the average properties of the gas on
Galactic scales or on the scales of molecular clouds or clumps.

? https://github.com/mriener/gausspyplus
?? Member of the International Max-Planck Research School for As-
tronomy and Cosmic Physics at the University of Heidelberg (IMPRS-
HD), Germany.
??? NSF Astronomy & Astrophysics Postdoctoral Fellow.

However, there is a tremendous wealth of physically interest-
ing information that can be gleaned from studying the detailed
velocity structure of the gas, among them fundamental insights
about turbulence properties in the ISM and molecular clouds
(e.g. Larson 1981; Ossenkopf & Mac Low 2002; Heyer & Brunt
2004; Burkhart et al. 2010; Orkisz et al. 2017; for reviews, see
Elmegreen & Scalo 2004 and Hennebelle & Falgarone 2012) and
dense cores (e.g. Falgarone et al. 2009; Pineda et al. 2010; Keto
et al. 2015; Chen et al. 2019), inference about imprints of shear
in molecular clouds (e.g. Hily-Blant & Falgarone 2009), and the
internal velocity structure of filaments (e.g. Arzoumanian et al.
2013, 2018; Hacar et al. 2013; Henshaw et al. 2014; Orkisz et al.
2019).

While the gas dynamics on smaller scales has been already
well studied, the detailed velocity structure of the gas on Galac-
tic scales remains as yet unexplored. We currently do not know
whether the velocity structure across large scales shows proper-
ties that could serve as diagnostics of phenomena such as molec-
ular cloud formation and evolution or the impact of the Galactic
structure on the ISM. To facilitate such analyses, we would ide-
ally like to apply the methods and techniques of the small-scale
studies to the large surveys of the Galactic plane.

One approach that has substantial potential is quantifying
and analysing the complex spectra taken through the Galac-
tic plane by decomposing them into velocity components and
then analysing the properties and statistics of these components.
In such analyses, the components are usually assumed to have
Gaussian shapes, as random thermal and non-thermal motions
in the gas lead to Doppler motions with a Gaussian distribution
of gas velocities. Moreover, adopting the Gaussian shape is

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Open Access funding provided by Max Planck Society.

A78, page 1 of 35

https://doi.org/10.1051/0004-6361/201935519
https://www.aanda.org
https://github.com/mriener/gausspyplus
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0

A&A 628, A78 (2019)

mathematically simple and leads to a significant reduction in
complexity and enables easier post-analysis steps through a rich
set of available Gaussian statistics tools.

Recently, several semi-automatic (e.g. Ginsburg & Mirocha
2011; Hacar et al. 2013; Henshaw et al. 2016, 2019) and
fully automated (e.g. Haud 2000; Lindner et al. 2015; Miville-
Deschênes et al. 2017; Clarke et al. 2018; Marchal et al. 2019)
spectral fitting techniques have been introduced. The semi-
automated techniques require user interaction, usually in decid-
ing how many velocity components to fit. This can be achieved,
for instance, by using spatially smoothed spectra to inform the
fit. However, the user-dependent decisions introduce subjectivity
to the fitting procedure that reduces reproducibility of the results.
The required interactivity with the user can also make it difficult
to distribute the analysis to multiple processors. Therefore, while
semi-automated approaches are well-suited for small data sets
(individual molecular clouds or nearby galaxies at high or low
spatial resolution, respectively), they can become prohibitively
time-consuming for the analysis of big surveys with millions of
spectra and components.

The automated methods overcome these drawbacks by
removing the user interaction. The initial number of components
can either be a guess (Miville-Deschênes et al. 2017; Marchal
et al. 2019) or based on the derivatives of the spectrum (Lindner
et al. 2015; Clarke et al. 2018). However, currently these auto-
mated routines either: fit the spectra independently from each
other (Lindner et al. 2015; Clarke et al. 2018), which might intro-
duce unphysical differences between the fit results of neighbour-
ing spectra; use a fixed number of velocity components as initial
guesses (Miville-Deschênes et al. 2017; Marchal et al. 2019),
which can be computationally expensive; or are not freely avail-
able to the community. Also, the current versions of the auto-
mated methods listed above are of the “first generation”; there is
still potential to improve the decomposition techniques and their
applicability to different data sets.

In this work, we present GaussPy+, an automated decom-
position package that is based on the existing GaussPy
algorithm (Lindner et al. 2015), but with physically-motivated
developments specifically designed for analysing the dynamics
of the ISM. We developed GaussPy+ with the specific aim of
analysing CO surveys of the Galactic plane, such as the Galac-
tic Ring Survey (GRS; Jackson et al. 2006) and SEDIGISM
(Schuller et al. 2017). However, GaussPy+ should be easily
adaptable to other emission line surveys for which Gaussian
shapes provide a good approximation of the line shapes. Some
of the line-analysis tasks of GaussPy+, such as the estima-
tion of noise and the identification of signal peaks, can also be
used as independent stand-alone modules to serve more specific
purposes.

In this paper, we present the algorithm and test it thoroughly
on synthetic spectra and a GRS test field. A full application of
GaussPy+ on the entire GRS data set is in preparation and will
be presented in a subsequent paper.

2. Archival data and methods

2.1. The GAUSSPY algorithm

In this work we extend and modify the GaussPy algorithm
(Lindner et al. 2015), which is an autonomous Gaussian
decomposition technique for automatically decomposing spec-
tra into Gaussian components. While GaussPy was devel-
oped for the decomposition of HI spectra (e.g. Murray et al.
2018; Dénes et al. 2018) it can in principle be used for the

decomposition of any spectra that can be approximated well by
Gaussian functions (e.g. CO).

One of the strengths of the GaussPy algorithm is that it
automatically determines the initial guesses for Gaussian fit com-
ponents for each spectrum with a technique called derivative spec-
troscopy. This technique is based on finding functional maxima
and minima in the spectrum to gauge which of the features are real
signal peaks. Since the estimation of maxima and minima requires
the calculation of higher derivatives (up to the fourth order), an
essential preparatory step in GaussPy is to smooth the spectra in
such a way as to get rid of the noise peaks without smoothing over
signal peaks (cf. Fig. 2 in Lindner et al. 2015). If the data set con-
tains signal peaks that show a limited range in widths, smooth-
ing with a single parameter α1 may already lead to good results
in the fitting. In the original GaussPy algorithm users can choose
between two different versions of denoising the spectrum before
derivatives of the data are calculated: a total variation regularisa-
tion algorithm and filtering with a Gaussian kernel. We use exclu-
sively the latter approach, in which the parameter α1 refers to the
size of the Gaussian kernel that is used to Gaussian-filter the spec-
trum. The decomposition of data sets that show a mix of both nar-
row and broad linewidths likely requires an additional smoothing
parameter α2 to yield good fitting outcomes. The fitting proce-
dure using a single or two smoothing parameters is referred to as
one-phase or two-phase decomposition, respectively.

It is essential for the best performance of the derivate spec-
troscopy technique to find the optimal smoothing parameters for
the original spectra. The GaussPy algorithm achieves this via an
incorporated supervised machine learning technique, for which
the user has to supply the algorithm with a couple of hundred
well-fit spectra, from which the algorithm then deduces the best
smoothing parameters.

More specifically, GaussPy uses the gradient descent tech-
nique – a first-order iterative optimisation algorithm – to find
values for α1 and α2 that yield the most accurate decomposition
of the training set. This accuracy is measured via the F1 score,
which is defined as:

F1 = 2 ·
precision · recall
precision + recall

, (1)

where precision refers to the fraction of fit components that are
correct and recall refers to the fraction of true components that
were found in the decomposition of the training set with guesses
for α1 and α2. See Lindner et al. (2015) for more details on how
the training set is evaluated.

2.2. 13CO data

We test GaussPy+ on data from the Boston University–Five Col-
lege Radio Astronomy Observatory GRS (Jackson et al. 2006)
that we downloaded from the online repository of the Boston
University Astronomy Department1. This survey covered the
lowest rotational transition of the 13CO isotopologue with an
angular resolution of 46′′, a pixel sampling of 22′′, and a spec-
tral resolution of 0.21 km s−1. The values in the GRS data set
are given in antenna temperatures, which we converted to main
beam temperatures by dividing them with the main beam effi-
ciency of ηmb = 0.481.

The lowest rotational transition of 12CO can show strong
self-absorption that can severely affect the lineshape (e.g. Hacar
et al. 2016). A decomposition of the spectrum can therefore

1 https://www.bu.edu/galacticring/new_data.html

A78, page 2 of 35

https://www.bu.edu/galacticring/new_data.html

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

lead to incorrect results, as strong self-absorption features can
be erroneously fit with multiple components. We do not expect
such strong opacity effects for 13CO observations, but it can
still become optically thick in very bright regions (e.g. Hacar
et al. 2016). Optical depth effects are also expected for 13CO
observations of nearby regions or observations with high spa-
tial resolution, for which the opacity effects are not smoothed
out as in a larger physical beam. For the moderate spatial res-
olution of the GRS survey one would thus not expect severe
optical depth effects, even though the analysis by Roman-Duval
et al. (2010) suggests that opacity effects do indeed have to
be taken into account for the GRS data set. In this work we
will not address the potential problems of optical depth effects
or self-absorption on the decomposition results, but we caution
that fitting 13CO peaks with Gaussian components might lead to
incorrect fits of multiple components for a single self-absorbed
emission line in case regions of optically thick 13CO are
expected to be present in the data set.

Even though in this paper we demonstrate the functionality
of GaussPy+ only for a small GRS test field, we used the entire
data set in testing and developing the algorithm. A forthcom-
ing paper will present and discuss the decomposition results of
GaussPy+ for the whole GRS data set and will also discuss the
effects and implications of possible optical depth effects for the
13CO emission and the fitting results.

3. New decomposition package: GaussPy+

The methods and procedures described in this section are all
either new preparatory steps for, or extensions to, the original
GaussPy algorithm. They aim at either improving the perfor-
mance of GaussPy or automating required preparatory steps.
Figure 1 presents a schematic outline of the GaussPy+ algorithm.

The main shortcomings of the original GaussPy algorithm
that we aim at improving are: (i) the noise values are calcu-
lated from a fixed fraction of channels in the spectrum, which is
not ideal in cases where signal peaks might occur at all spectral
channels; (ii) the user has to supply the training set; (iii) there is
no in-built quality control of the fit results; (iv) the fit of each
spectrum is treated independently of its neighbours. The last
point might lead to drastic jumps between the number of Gaus-
sian components between neighbouring spectra. From a physi-
cal point of view we would not expect such component jumps
for resolved extended objects with sizes larger than the beam.
Moreover, observations are often Nyquist sampled, in which
case the beam size or resolution element is larger than the pixel
size. Therefore neighbouring pixels will contain part of the same
emission, which also introduces coherence between the number
of components between neighbouring spectra.

To develop a fitting algorithm that improves on the above
points, we have included in GaussPy+: (i) automated preparatory
steps for the noise calculation and creation of the training set (see
Sect. 3.1); (ii) automated quality checks for the decomposition,
some of which can be customised by the user and are used to
flag and refit unphysical or unwanted fit solutions (see Sect. 3.2);
(iii) automated routines that check the spatial coherence of the
decomposition and in case of conflicting results try to refit the
spectrum based on neighbouring fits (see Sect. 3.3).

In the following, the GaussPy+ algorithm is described in
detail, following the outline presented in Fig. 1. A descrip-
tion of GaussPy+ keywords including their default values and
other symbols used throughout the paper can be found in the
Appendix F.2.

Improving the GaussPy
decomposition (3.2):

Preparatory steps (3.1):

Spatially coherent refitting (3.3):

In-built quality control (3.2.1)

Optional quality control (3.2.2)

Improved fitting routine (3.2.3)

Phase 1: Refitting of the flagged fits
(3.3.1)

Phase 2: Refitting of the spatially
incoherent fits (3.3.2)

Noise estimation (3.1.1)

Identification of signal intervals (3.1.2)

Masking noise artefacts (3.1.3)

Creation of the training set (3.1.4)

original GaussPy algorithm (2.1)

GaussPy+

Fig. 1. Schematic outline describing new automated methods and proce-
dures included in GaussPy+, along with corresponding sections in this
paper.

3.1. Preparatory steps

3.1.1. Noise estimation

The original GaussPy algorithm either requires the user to sup-
ply noise estimates or uses a certain fraction of the spectral
channels, assumed to contain no signal, for the noise estima-
tion. However, the latter approach only leads to correct noise
estimates if one can exclude the presence of signal peaks in the
spectral channels used to calculate the noise.

A reliable noise estimation is of fundamental importance for
the decomposition – key steps of GaussPy depend on the noise
value, and also the new procedures in GaussPy+ rely on accurate
noise estimation: the signal-to-noise (S/N) threshold is used for
the initial guesses for the number of components in GaussPy and
the noise estimate is needed for the quality assessments of the fit
components in GaussPy+. Because of the key role of the noise,
we developed a new, automated noise estimation routine as a
preparatory step for the decomposition.

The fundamental, underlying assumptions in our noise esti-
mation process are: i) the noise statistics are Gaussian, mean-
ing “white noise”; ii) the spectral channels are uncorrelated;
and iii) the noise is fluctuating around a baseline of zero. These
assumptions enable us to make use of the number statistics of
negative and positive channels in the noise estimation process
(elaborated further in item 1 below).

A78, page 3 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=1

A&A 628, A78 (2019)

Channel

In
te

ns
ity

Step 1

± rms, true

Channel

Step 2 & Step 3

±5 MAD

Channel

Step 4

± rms, true

± rms

Fig. 2. Illustration of our automated noise estimation routine for a mock spectrum containing two signal peaks and a negative noise spike. Hatched
red areas indicate spectral channels that are masked out and hatched blue areas indicate all remaining spectral channels used in the noise calculation.
Right panel: Comparison of the true noise value (σrms, true; black dash-dotted lines) with the noise value estimated by our automated routine (σrms,
blue solid lines). See Sect. 3.1.1 for more details.

In the following, we describe how our automated noise esti-
mation proceeds. The overall idea is to identify the spectral chan-
nels that can be used for noise estimation and maximise their
number. To do so, the routine has to identify as many channels
as possible that are free from signal and instrumental effects.
We demonstrate the steps of the process for a mock spectrum in
Fig. 2. The spectrum has 100 channels and contains two chal-
lenging features for the noise estimation: a negative noise spike
in the first few channels and a broad signal feature with a maxi-
mum amplitude of two times the root-mean-square noise σrms.

The steps to estimate the noise are the following:
1. Mask out broad features in the spectrum; such features

are likely to be either positive signal or instrumental artefacts
due to, for instance, insufficient baseline corrections. Given our
basic assumptions (see above), spectra containing (only) noise
have the same number of positive and negative spectral channels
on average. We can use this fact to determine the probability of
having a number of consecutive positive or negative channels
in the spectrum, meaning the probability that a given feature is
noise (instead of a signal peak or an artefact). This provides a
mean to mask out features that are likely not noise. We estimate
the probability that a consecutive number of positive or negative
channels is due to noise with a Markov chain (see Appendix A
for more details). We then mask out all features whose proba-
bility to be caused by noise is below a user-defined threshold
PLimit. For the example spectrum in Fig. 2 we used the default
value of PLimit = 2%2. From the Markov chain calculations for
a spectrum with 100 spectral channels we get that all features
with more than twelve consecutive positive or negative channels
have a probability less than PLimit = 2% to be the result of ran-
dom noise fluctuations and are thus masked out (one feature; see
left panel in Fig. 2). In many cases, peaks will still continue on
both sides of the identified consecutive channels. To take this
into account, the user can specify how many additional channels
Npad will be masked out on both sides of the identified feature. In
the example spectrum (Fig. 2) we set Npad = 2, so two additional
channels on both sides of the identified features got masked out.

2. Use the unmasked negative channels to calculate their
median absolute deviation (MAD). We use the MAD statistic
because it is very robust against outliers in the data set, such as
noise spikes. The relationship of MAD to the standard deviation
σ is MAD ≈ 0.67σ. We restrict the calculation of the MAD to

2 PLimit = 2% yielded good results in our tests and represents a good
compromise between excluding signal peaks with low-amplitude values
from the noise estimation without masking out too many noise features.

spectral channels with negative values, since the positive chan-
nels can still contain multiple narrow high signal peaks that were
not identified in the previous step. Narrow negative spikes will
still be included in this calculation but we assume that their pres-
ence is sufficiently uncommon so that they will not significantly
affect the estimation of the MAD.

3. Identify intensity values with absolute value higher than
5 ×MAD. We then mask out all consecutively negative or posi-
tive channels of all features that contain an intensity value higher
than ±5 ×MAD3. The mask is extended again on both sides by
the user-defined number of channels Npad. In the example spec-
trum, two regions are masked out in this step (middle panel in
Fig. 2), corresponding to the second positive signal and the neg-
ative noise spike in the spectrum.

4. Use all remaining unmasked channels to calculate the rms
noise. The example spectrum is left with 51 unmasked channels
(blue hatched areas in the right panel of Fig. 2) from which the
noise is estimated.

The right panel of Fig. 2 shows the determined σrms value
(blue solid line), which is very close to the true value σrms, true
(black dash-dotted line) that was used to generate the noise.
This example represents a case in which estimating the noise
from a fixed fraction of channels in the beginning or the end
of the spectrum would obviously not work well. Had we esti-
mated the noise with the first or last 20% of spectral channels,
we would have overestimated the noise by factors of 2.3 and 1.3,
respectively.

In case of residual continuum in the spectrum or signal peaks
covering almost all of the spectral channels, the noise estimation
can be skewed and biased towards low values. To circumvent
this problem, the user can supply an average noise value 〈σrms〉

or calculate 〈σrms〉 directly from the datacube by randomly sam-
pling a specified number of spectra throughout the cube. This
〈σrms〉 value is adopted instead of the value resulting from steps
1−4 above, if (1) the fraction of spectral channels available for
noise calculation from steps 1−4 is less than a user-defined value
(default: 10%), and (2) the noise value resulting from steps 1−4
is less than a user-defined fraction of 〈σrms〉 (default: 10%)4. If
no 〈σrms〉 value is supplied or calculated, the spectra that do not

3 We choose ±5×MAD as our threshold because it is a good trade-off:
lower thresholds would remove too many valid noise peaks and higher
thresholds could miss too many narrow signal peaks with low amplitude
values.
4 The default values are deliberately set to low values to target only
spectra with anomalies such as severe baseline effects.

A78, page 4 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=2

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

reach the required minimum fraction of spectral channels for the
noise calculation are masked out.

We performed thorough testing of the effects of random
noise fluctuations on our noise estimation routine. A detailed
description of the tests is given in Appendix B.2. The tests
showed that the routine is robust in typical situations (pure white
noise, white noise with signal, white noise with signal and neg-
ative noise spikes, white noise with weak signal and negative
noise spikes).

3.1.2. Identification of signal intervals

If a spectrum contains a high fraction of signal-free spectral
channels, goodness of fit calculations can be completely dom-
inated by noise and their value thus may decrease to accept-
able numbers even in cases for which the fit did not work out.
Therefore, we added a routine to GaussPy+ that automatically
identifies intervals of spectral channels that contain signal; good-
ness of fit calculations are subsequently restricted to these chan-
nels5. However, the fitting itself is still performed on all spectral
channels.

As part of our automated noise estimation routine (outlined
in Sect. 3.1.1) we already identify consecutive positive spectral
channels that can potentially contain signal (see Fig. 2). We iden-
tify these features as signal intervals using a criterion that takes
both the S/N and the extent of the feature into account (this cri-
terion is described in more detail in Sect. 3.2.1). For spectra that
contain a single narrow peak, only a small fraction of the spectrum
might be identified as signal interval. To ensure that for such cases
the goodness of fit values are not artificially increased by a too
small number of spectral channels, the user can require that a min-
imum number of spectral channels be adopted as signal intervals
(Nmin; default value: 100). If the signal intervals identified in the
spectrum contain fewer channels than required by Nmin, the size of
all individual signal intervals identified in the spectrum is incre-
mentally increased on both sides by Npad, until Nmin is reached.
This incremental padding will not include regions masked out
as negative noise spikes (see next section). If no signal intervals
could be identified in the spectrum, all channels are used for good-
ness of fit calculations, even though it is unlikely in this case that
there are peaks in the spectrum that will be fit. We tested the per-
formance of the signal interval identification on synthetic spectra
and found that it is able to reliably determine weak and strong
signal peaks without being sensitive to smaller peaks caused by
random noise fluctuations (see Appendix B.3).

3.1.3. Masking noise artefacts

Spectra can sometimes contain negative noise spikes, which
can bias the goodness of fit calculations. In principle, candi-
date regions with negative noise spikes are already identified in
the automated noise estimation routine (Sect. 3.1.1). However,
since the MAD-based threshold is set to a conservative value
to exclude most of the narrow signal peaks from the noise esti-
mation, it will also incorrectly remove an increased fraction of
regular noise peaks or false positives (see the distribution for
sample A of our synthetic spectra in Fig. B.2). To avoid such
contamination of identified noise artefacts by regular noise
peaks, the user can decide below which negative value features
get masked out by supplying the value in terms of the S/N
(S/Nspike; default value: 5). Setting S/Nspike = 5 means that any

5 With the exception of one normality test that we perform over the
whole channel range. See Sect. 3.2.1 and Appendix D.

region of consecutive negative channels that contains at least one
channel with a value lower than −5 × σrms will get masked out.
We tested the performance of the identification of noise spikes
on synthetic spectra and found that we are able to reliably mask
such features out (see Appendix B.4).

3.1.4. Creation of the training set

As described in Sect. 2.1, GaussPy needs a sample of already
decomposed spectra to determine the smoothing parameters used
in the decomposition. In principle, this training set can be com-
posed of synthetic spectra whose noise and emission properties
are similar to the data set the user wants to analyse. Another
approach is to use actual spectra from the data set for which
the user can supply a reliable decomposition. We added a rou-
tine to GaussPy+ that adopts the latter approach and automati-
cally decomposes a user-defined number of spectra from the data
set. These decomposition results are then supplied to GaussPy,
which uses its machine learning functionality to infer the most
appropriate smoothing parameters for the data set.

In principle, we could use GaussPy itself to construct decom-
positions for this training sample by first guessing the smoothing
parameters and correcting them accordingly to get good fitting
results. However, since it can be tricky and time-consuming to
guess the correct smoothing parameters for a data set we added
a routine to GaussPy+ that decomposes spectra for a training set.

Our key requirement for this decomposition routine was that
it should be able to produce high quality fits for a small sub-
set of the data set. We recommend to use training set sizes of
about 200−500 decomposed spectra, as these should already
give very good values for the smoothing parameter. In principle
also larger training sets can be created, but users should be aware
that in this case it can become time-consuming to train GaussPy,
as it might be necessary to use different starting values for the
smoothing parameters α1 and α2 to make sure that the search
for optimal smoothing parameters explored the parameter space
properly and did not get stuck in a local minimum (see Fig. 3
in Lindner et al. 2015). Training sets containing <200 spectra
bear the risk of higher uncertainties for the resulting smooth-
ing parameter values, as incorrectly fitted features in the training
set may have a large negative impact on the F1 score. While
deviations of the smoothing parameters from the optimal val-
ues will impact the decomposition with GaussPy, the improved
fitting (Sect. 3.2.3) and spatially coherent refitting (Sect. 3.3)
routines in GaussPy+ should be able to mitigate such incorrect
or insufficient decomposition results. Thus the decomposition of
GaussPy+ also has a bigger margin for deviations of the smooth-
ing parameters from their optimal values than the decomposition
with GaussPy, which allows the use of smaller training set sizes.

For the decomposition of the spectra for the training set we
use the SLSQP optimisation algorithm and least squares statis-
tic (SLSQPLSQFitter) of the astropy.modeling package, which
produced good fits to the spectra in our tests of the routine. We
have to supply the SLSQPLSQFitter routine with initial guesses
for possible Gaussian fit components. We determine the number
of Gaussian fit component candidates and their initial guesses by
estimating how many local positive extreme values or maxima
are present in the spectrum. To find these local extreme values,
we first set all values to zero that are below a user defined S/N
threshold (S/Nmin; default value: 3). The remaining positive val-
ues are then searched for local maxima. We define a local maxi-
mum as a peak that exceeds all values for a minimum number of
neighbouring spectral channels on either side of the peak. This
required minimum number of spectral channels on either side

A78, page 5 of 35

A&A 628, A78 (2019)

can be defined by the user with the ξ parameter (default value:
6). To infer a good value for ξ, users are advised to check the
shape of the components present in the spectra or make a test
run for a small training set size and check the decomposition
results (routines for plotting the spectra, decomposition results,
and residuals are contained in our method).

Our routine then tries to fit a number of Gaussian compo-
nents according to the inferred peaks of local positive maxima
present in the spectrum. We therefore likely start out with the
maximum possible number of Gaussian fit components for the
spectrum. The individual fit parameters of each Gaussian param-
eter (amplitude ai, mean position µi, standard deviation σi) are
then checked for the following criteria:

– amplitude ai ≥ S/Nmin × σrms
– significanceSfit ≥ Smin. See Sect. 3.2.1 for more information

about this criterion.
– the standard deviation σi is between user defined limits:
σmin ≤ σi ≤ σmax, where the limits for the standard devi-
ation can be specified in terms of the full width at half maxi-
mum (FWHM) given as fraction of channels (Θmin and Θmax;
default values: 1. and None, respectively).

We do not check if components are blended in the creation of
the training set. If any of the individual Gaussian components
do not satisfy all these requirements, their values are removed
from the list of initial guess values and a new fit is performed.
These checks and the subsequent refitting is performed as long
as some of the individual Gaussians are not satisfying all the
criteria or there are no more Gaussian parameters remaining. In
the process of refitting a spectrum we do not add any new fit
component candidates.

We thoroughly tested the routine outlined in this section on
samples of synthetic spectra and found that it is able to create reli-
able training sets that allow inferring optimal smoothing param-
eters with GaussPy (see Appendix B.5). However, we did not
optimise the SLSQPLSQFitter decomposition routine for speed,
which is why we recommend to only use this fitting technique for
the creation of training sets. See Appendix C.1 for a quantitative
comparison between the SLSQPLSQFitterfitting routine and the
improved fitting routine of GaussPy+ (Sect. 3.2.3) in terms of exe-
cution time and performance of the decomposition.

3.2. Improving the GAUSSPY decomposition

3.2.1. In-built quality control

In this section, we describe the automated quality checks for the
decomposition results we implemented in GaussPy+. Figure 3
illustrates how the in-built quality controls for individual fit com-
ponents are used to improve the fit results for a spectrum. If indi-
vidual Gaussian components do not satisfy one of the criteria
outlined in Fig. 3 they get discarded. This refitting procedure
using the in-built quality controls is applied to all fit solutions
obtained in the decomposition steps of GaussPy+ (Sects. 3.2.3–
3.3.2). The corrected Akaike information criterion and normality
tests for the normalised residual are used to decide between dif-
ferent fit solutions of a spectrum and to assess whether a spec-
trum needs to be refitted, respectively. See also Appendix C.4
for a discussion about the performance of the in-built quality
controls on the decomposition results of the synthetic spectra
(Sect. 4) and the GRS test field (Sect. 5).

FWHM value. If users supply limits for the lower and upper
values of the FWHM (Θmin and Θmax, respectively) all fitted
components with FWHM values outside this defined range are

best fit results
for spectrum

A

B

in-built
quality check

for all fit
components

No

finalise fitting
results

A

B

quality check for
single fit component

Yes

remove fit
component

Yes

No

removed fit
components

refit
spectrum

Yes

check Θ

check 𝑎

check 𝘚fit

check µ

Yes

Yes

No

No

No

Fig. 3. Flowchart outlining how in-built quality controls from
Sect. 3.2.1 are applied to fit results of a spectrum.

removed. In the GaussPy+ default settings Θmin = 1, which
means that the FWHM value of a fit component has to be at
least one spectral channel. By default, GaussPy+ does not set
any value for Θmax. Users are advised to use the Θmax parame-
ter with caution, as it can produce artefacts in the decomposi-
tion, such as an increase of the number of fit components whose
widths are close to or exactly at this predefined upper limit.

Signal-to-noise ratio. The user-defined minimum S/N of
S/Nmin (default value: 3) is in the default settings used as the
S/N threshold for: (i) the original spectrum and the second deriva-
tive of the smoothed spectrum in the GaussPy decomposition (i.e.
SNR1 = S/Nmin and SNR2 = S/Nmin); (ii) the search for new
peaks in the residual (Sect. 3.2.3); (iii) the search for negative
residual peaks (i.e. S/Nmin, neg = S/Nmin, Sect. 3.2.2); (iv) the
decomposition of the training set (Sect. 3.1.4). These parameters
can all be set to different values from each other to improve the
fitting results but we advise to keep them at the same value for
consistency.

The minimum required amplitude values of Gaussian fit
components are determined by the S/Nmin,fit parameter, whose
default value is half the value of S/Nmin. All Gaussian compo-
nents with ai < S/Nmin,fit×σrms will be removed from the fit. We
recommend setting S/Nmin,fit < S/Nmin to allow fit components
to also converge to an amplitude value that is below S/Nmin, as
such smaller unfit peaks might otherwise negatively influence
the fitting results of higher signal peaks that are close by (cf.
panel b in Fig. 5). A smaller value for S/Nmin,fit can also be ben-
eficial if it cannot be excluded that some of the spectra might
be affected by insufficient baseline subtraction effects, in which
case the spectra would show a very broad but low-amplitude
feature that can stretch over all spectral channels. However, the
S/Nmin,fit can also be supplied by the user directly in case the
default settings do not yield good results.

Significance. To further check the validity of fitted Gaus-
sian components, we use the integrated area of the Gaussian as a

A78, page 6 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=3

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

Channel

In
te

ns
ity

Sdata = 8.4
Sfit = 6.7

a)

Channel

Sdata = 5.7
Sfit = 3.8

b)

Channel

Sdata = 6.3
Sfit = 5.1

c)

Fig. 4. Calculation of the significance for Gaussian fit components (Sfit;
blue dashed lines) or peaks in the data (Sdata; red-shaded areas). The
dotted and dash-dotted lines indicate the σrms value and S/N thresholds
of 3, respectively.

proxy for the significance of the component. Assuming that the
noise properties are Gaussian (white noise), random noise fluc-
tuations are more likely to cause narrow features with a higher
amplitude than broader, extended features with a lower ampli-
tude. With this significance criterion we basically require that
the fit components, or data peaks, have either very high intensity
or are extended over a wide channel range.

The integrated area Wi of a Gaussian component can be cal-
culated from its amplitude and FWHM value Θ in terms of spec-
tral channels:

Wi = ai · c ·
√

2π (2)

with the parameter c defined as

c =
Θi

2
√

2 ln 2
· (3)

For the calculation of the significance value, we compare the
area of the Gaussian component to the integrated σrms interval
of the channels from the interval µi ± Θi, which gives a good
approximation for the total width of the emission line:

Sfit =
Wi

√
2 · Θi · σrms

· (4)

The Sfit value is then compared to a user-defined minimum Smin
(default value: 5) and the Gaussian component is discarded if
Sfit < Smin. This check helps to remove noise peaks that might
have been fit and were not discarded in the checks for the S/N.

We can use the significance parameter also as a threshold
to decide whether peaks in the data are valid signal peaks. For
this estimate of the significance (Sdata), we first search for peaks
in the data above the user-defined S/N threshold and then com-
pare the integrated intensity of all positive consecutive channels
belonging to this feature to the integrated σrms interval of the
channels spanned by this feature. We discard the peak as a valid
signal feature if Sdata < Smin.

Figure 4 illustrates this significance measure for three differ-
ent cases. Panel a shows a signal peak and fit component that
is very likely corresponding to a true signal, with the signifi-
cance measures for the data peak and the fit both above the crit-
ical default value of 5. Panel b shows a data peak with narrow
linewidth that might be caused by random fluctuations of the
noise. The Sdata value of this feature passes the threshold value
Smin = 5, but the depicted Gaussian fit component for this data
feature only has a Sfit value of 3.8. This low Sfit value would
cause the algorithm to reject this fit component even though its
peak has a high S/N of about 5. Panel c shows a broader fea-
ture, which has only low S/N values. However, since this feature
is spread over more spectral channels than the feature shown in
panel b, we would accept it based on its Sdata value. With the

In
te

ns
ity

a)

Channel

b)

Channel

In
te

ns
ity

c)
Individual signal peaks
Total signal
Gaussian fit component
Gaussian fit component
Centroid position of fit component
Centroid position of fit component
Sum of fit components
Residual
S/N ratio of ±3

Fig. 5. Optional criteria used to flag fits in the improved fitting rou-
tine and in the spatially coherent refitting stage: (a) negative residual
features introduced by the fit, (b) broad components, (c) blended com-
ponents.

default settings of GaussPy+we would also keep the depicted fit
component. As already mentioned in Sect. 3.2.1, it can be ben-
eficial to keep Gaussian components with such low S/N in the
decomposition results, as to not negatively influence the fitting
of nearby data peaks (cf. panel b in Fig. 5).

For a fitted feature or signal peak containing Nfeat spectral
channels, the Smin parameter implies an average S/N of 〈S/N〉

〈S/N〉 =
Smin
√

Nfeat
· (5)

Users can apply this relation to judge which value for Smin is
most suitable for their data set. For the default value of Smin = 5,
Gaussian fits or signal peaks spanning 4 or 9 spectral channels
would require 〈S/N〉 values across the feature of 2.5 and ∼1.7,
respectively. See Appendix C.3 for a discussion about the effects
a variation of the S/Nmin and S parameters has on the decompo-
sition results.

Mean position outside channel range or signal intervals.
All Gaussian components whose mean positions µi are outside
the channel range [0,Nchan] are automatically discarded from the
fit. If the mean position of a fit component is located outside the
estimated signal intervals (Sect. 3.1.2), we check the significance
value of the fitted data peak Sdata (Sect. 3.2.1). We discard the
corresponding fit component, if Sdata is smaller than the user-
defined threshold for the significance Smin.

Estimation of the goodness of fit. When we fit a model to
data whose errors are Gaussian distributed and homoscedastic,
we can arrive at a good fit solution by minimising the chi-squared
(χ2), which is defined as the weighted sum of the squared
residuals:

χ2 =

N∑
i=1

(
yi − Yi

)2

σ2
rms

, (6)

with yi and Yi denoting the data and fit value at channel position i,
respectively. The reduced chi-square (χ2

red) value is often used as
an estimate for the goodness of fit, since it also takes the sample
size (in our case the number of spectral channels) and number of

A78, page 7 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=4
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=5

A&A 628, A78 (2019)

fit parameters into account. χ2
red is defined as the chi-squared per

degrees of freedom:

χ2
red =

χ2

N − k
, (7)

with N being the sample size (in our case this corresponds to
the number of considered spectral channels) and k denoting the
degrees of freedom, which in the case of a Gaussian decomposi-
tion would be three times the number of fitted Gaussian compo-
nents. It thus may seem straightforward to use the χ2

red value to
judge whether all signal peaks in a spectrum were fitted, as one
would expect χ2

red ∼ 1 in this case. However, as Andrae et al.
(2010) pointed out, in case of non-linear models such as a com-
bination of Gaussian functions, the exact value for k cannot be
reliably determined and can vary between 0 and N − 1 and need
not even stay constant during the fit. The χ2

red estimate is thus
not the best metric to decide between different fit solutions for a
spectrum6.

A more suited criterion for model selection is the Akaike
information criterion (AIC; Akaike 1973), which aims for a
compromise between the goodness of fit of a model and its sim-
plicity, by penalising the use of a large number of fit components
that do not contribute to a significant increase in the fit quality.
The AIC is defined as

AIC = 2k − 2 ln(L̂), (8)

with L̂ being the maximum value of the likelihood function for
the model. If the parameters of a model are estimated using the
least squares statistic – as in our case – the AIC is given as7:

AIC = N · ln
∑N

i=1 (yi − Yi)2

N

 + 2k. (9)

For small sample sizes, the AIC tends to select models that
have too many parameters, meaning that it will overfit the data.
Therefore a correction to the AIC was introduced for small sam-
ple sizes8 – the corrected Akaike information criterion (AICc;
Hurvich & Tsai 1989) that is defined as:

AICc = AIC +
2k2 + 2k
N − k − 1

. (10)

We employ the AICc as our model selection criterion to
decide between different fit solutions. The AICc value is mean-
ingful only in relative terms, that is if the AICc values for two
different fit solutions are compared with each other. In such a
comparison, the fit solution with the lower AICc value is pre-
ferred as it incorporates a better trade-off between the used num-
ber of components and the goodness of fit of the model.

As an alternative to goodness of fit determinations based
on the χ2

red value, Andrae et al. (2010) suggest to check
whether the normalised residuals show a Gaussian distribu-
tion. We implement this additional goodness of fit criterion in
GaussPy+ by subjecting the normalised residuals to two differ-
ent normality tests: the Scipy.Stats.Kstest, which is a two-sided
Kolmogorov-Smirnov test (Kolmogorov 1933; Smirnov 1939);
and the Scipy.Stats.Normaltest, which is a based on D’Agostino

6 We thus use maps of the determined χ2
red values only for qualitative

comparisons in Sect. 5.3.
7 For a derivation of Eq. (9) see e.g. Banks & Joyner (2017).
8 Burnham & Anderson (1998) recommend to use the corrected AIC
instead of the AIC if N/k < 40. If the sample size N → ∞, the corrected
AIC value converges to the AIC value.

(1971) and D’Agostino & Pearson (1973) and analyses the skew
and kurtosis of the data points. Both of these normality tests exam-
ine the null hypothesis that the residual resembles a normal dis-
tribution, as would be expected if we are only left with Gaussian
noise after we subtract the fit solution from the data. If the p-value
from one of these test is less than a user-defined threshold (default:
1%), we reject the null hypothesis and will try to refit the spectrum.
We found that the combined results of these two hypothesis tests
allows a robust conclusion of whether the residual is consistent
with Gaussian noise (see Appendix D for more details).

3.2.2. Optional quality control

The automated checks described in the previous section should
already help to reject many fit components that are not satisfying
our quality requirements. However, depending on the data set,
the user might want to flag and refit the decomposition based on
more criteria, which we outline in this section9. The quality cri-
teria discussed in this section are used to flag and refit spectra in
the improved fitting and spatially coherent refitting routines dis-
cussed in Sects. 3.2.3 and 3.3, respectively10. See Appendix C.4
for a discussion about the performance of the optional quality
controls on the fitting results of the synthetic spectra (Sect. 4)
and the GRS test field (Sect. 5).

Negative peaks in the residual. The first quality check
examines negative peaks in the residual, since these can indi-
cate a poor fit. Panel a in Fig. 5 presents a scenario in which a
double peaked profile (shown in dashed grey lines) is fit with
a single Gaussian component (red line), leading to a significant
negative peak in the residual (dash-dotted black line) at the posi-
tion between the two data peaks. The search for negative peaks
in the residual can be controlled by the user with the S/Nmin, neg
parameter, which defines the minimum S/N that the negative
peak has to have (in the default settings S/Nmin, neg = S/Nmin).
To be flagged as a negative residual feature, a negative peak has
to satisfy |yi − Yi| ≥ S/Nmin, neg × σrms, with yi and Yi denoting
the data and corresponding fit value at channel position i. This
requirement takes into account that negative peaks could have
already been present in the original spectrum and requires that a
significant part of the negative peak was introduced by the fit.

Gaussian components with a broad FWHM. It can
occur that a single, broad Gaussian component is fit over mul-
tiple peaks in the spectrum, which can be an undesired prop-
erty. A broad feature can be caused by peaks being close to
the noise limit, multiple blended components, or issues in the
data reduction, for instance, insufficient baseline corrections or
unsubtracted continuum emission. Panel b in Fig. 5 shows an
example of a broad component that was incorrectly fit over multi-
ple data peaks without introducing significant residual features
as in panel a. This would lead to wrong estimates of the total
number of components present in this spectrum, a severe over-
estimate of the linewidth for the two smaller peaks incorrectly
fit with one component, and an underestimate of the amplitude
of the rightmost component. The example presented in panel b
also highlights why it can be beneficial to set the required mini-
mum S/N threshold for fitted component S/Nmin,fit to lower values
than the S/N threshold for data peaks S/Nmin (see Sect. 3.2.1). If

9 All quality checks or flags in this section can be selected or dese-
lected by the user.
10 The criterion comparing the number of fit components between
neighbouring spectra is only used in the spatially coherent refitting
routines.

A78, page 8 of 35

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

S/Nmin,fit were set equal to S/Nmin, the fit component for the left-
most peak in panel b will get discarded, forcing the fit of a broad
component over the two leftmost peaks to minimise the residual.

Unfortunately, it can be difficult to set a maximum allowed
FWHM value for the Gaussian components, as the range of
expected values in the data may not be known. Setting a strict
limit for the maximum FWHM value might also lead to a large
number of components which have their linewidth equal to the
limiting value. To prevent such an undesired effect, we flag a
component as broad if it is broader by a user-defined factor
fΘ,max (default value: 2) than the second broadest fit component.
This obviously does not work for spectra with only one Gaus-
sian component fit, but this case is taken into account during the
spatially coherent refitting (Sect. 3.3.1).

Another physical cause for the broadening of the lines could
be opacity broadening, which is especially relevant for optically
thick emission lines such as the 12CO(1-0) rotational transition
(Hacar et al. 2016). In case the user expects opacity broadening
for a significant number of spectra in the data set, we recommend
to not flag or refit broad fit components.

Blended Gaussian components. We define a Gaussian
component i as blended with a neighbouring component j, if
the distance between their mean positions µi and µ j is less than
the minimum required separation µsep. This minimum required
separation is determined by multiplying the lower FWHM value
of the two components with a user-defined factor fsep:

µsep = fsep ×min(Θi,Θ j). (11)

The default value of fsep is 1/
√

2 ln 2. This value was chosen
so that the required separation between two identical Gaussian
components defaults to two times their standard deviation. If two
identical Gaussian fit components are separated by a distance
larger than two times their standard deviation, their combined
signal would have a local minimum between the two peak posi-
tions, which we define as a requirement for well resolved Gaus-
sian fit components. Panel c in Fig. 5 shows a case in which the
minimum separation between the peak positions of the two iden-
tical Gaussian fit components is not reached. The combined sig-
nal of the fit components (shown in orange) shows no local min-
imum between the peak positions and a single Gaussian compo-
nent that corresponds to the sum of the two individual compo-
nents would thus be evaluated as a better fit.

Without additional information from neighbouring spec-
tra it can be very difficult to reliably conclude whether a
two-component fit is a better choice than the fit of a single
component. If this quality criterion is selected by the user we
will therefore always try to replace two blended components
with a single bigger component in the improved fitting routine
(Sect. 3.2.3), where each spectrum is still treated independently.

Residuals not normally distributed. This flag checks
whether the normalised residuals show a Gaussian distribution.
We subject the normalised residual to two different tests for nor-
mality (see Sect. 3.2.1 for more details), with the null hypothesis
that the residual values are normally distributed. We reject this
null hypothesis if the p-value of at least one of the normality
tests is less than a user-defined threshold (default: 1%), in which
case the spectrum gets flagged.

Different number of components compared to neighbour-
ing spectra. This quality criterion compares the number of fitted
Gaussian components of a spectrum with its immediate neigh-
bouring spectra. We include the fit solutions of all neighbour-
ing spectra in this comparison, irrespective of whether they were

a) b) c)

7 5 5

6 4 5

7 5 6

1

2

1

2

1

2

1

2

1 1

1

1

2 2 2

2 4 2

2 2 2

Fig. 6. Illustration of the flagging of spectra based on their number of
components with the default settings of our algorithm. Each 3×3 square
shows the central spectrum (in white) and the surrounding immedi-
ate neighbours coloured according to their weights. Panel a: Weights
we apply to each neighbouring fit solution to calculate their weighted
median. Panels b and c: Two cases where the fitted number of com-
ponents of the central spectrum would be flagged as incompatible with
the fitted number of components of their neighbours. See Sect. 3.2.2 for
more details.

already flagged by another optional quality criterion. There are
two conditions for which a spectrum can be flagged by this
check:

– The number of components Ncomp in the spectrum is dif-
ferent by more than a user defined value ∆Nmax (default value:
1) from the weighted median number of components deter-
mined from all its immediate neighbours. For a sequence of
n ordered elements x1, x2, . . . , xn with corresponding positive
weights w1,w2, . . . ,wn that sum up to wtot, the weighted median
is defined as the element xk for which

∑k−1
i=0 wi < 0.5 × wtot and∑n

i=k+1 wi < 0.5 × wtot. Panel a in Fig. 6 shows the weights we
apply to the immediate neighbours, which are inversely propor-
tional to their distance to the central spectrum.

– The spectrum shows differences in Ncomp towards individ-
ual neighbours that exceed a user defined value ∆Njump (default
value: 2). We flag a spectrum if these differences occur towards
more than Njump (default value: 1) of its neighbouring spectra.

We illustrate this criterion in Fig. 6 for two cases and the
default settings of GaussPy+. Panel b shows an instance where
the fit solution of the central spectrum shows no component
jumps >2 to any of its neighbours. However, we would still flag
the central spectrum for its number of fitted components, since
it differs by more than ∆Nmax to the weighted median number
of components as inferred from the neighbouring fit solutions (2
components). Panel c shows the opposite case, where the median
number of components of 5 is still compatible with the actual
number of components but the fit solution of the central spec-
trum would be flagged as inconsistent with its neighbours as it
shows two component jumps >2 with two of its neighbours.

3.2.3. Improved fitting routine

The improved fitting routine in GaussPy+ aims to improve the
fitting results of the original GaussPy algorithm via the use of
the quality controls described in Sects. 3.2.1 and 3.2.2. The
original version of GaussPy hands over its initial guesses to a
least squares minimisation routine without restricting the fitting
parameters, apart from a requirement of positive amplitude val-
ues. This means that the individual Gaussian components are
allowed to freely vary their FWHM and mean positions. More-
over, the number of Gaussian components is set and fixed by
the initial guesses, so if GaussPy determined that the fit should
contain a certain number of Gaussian components, it will try to
fit all those components even if one of them does not contribute
to improving the fit or is making the fit worse. This unrestricted
fitting can lead to unphysical results or conflicting fit solutions

A78, page 9 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=6

A&A 628, A78 (2019)

between neighbouring spectra (see the quality flags discussed in
Sect. 3.2.2).

The general idea of our routine is to try to improve the fit
based on the residual and optional user-selected quality crite-
ria (Sect. 3.2.2). This improved fitting phase is applied to every
spectrum. The steps of this routine proceed as follows (see also
Fig. 7):

1. Check the best fit result of GaussPy with the quality crite-
ria outlined in Sect. 3.2.1 (see Fig. 3). All Gaussian components
not satisfying any of these criteria are removed from the best fit
solution of GaussPy and the spectrum is refit with the remain-
ing fit components; this procedure gets repeated until all of the
leftover fit components satisfy all quality criteria.

2. Try to iteratively improve the fit by adding new Gaus-
sian components based on positive peaks in the residual of the
best fit solution. Requirements for the acceptance of residual
peaks as additional Gaussian component candidates are that: (i)
the maximum value of the residual peak is higher than S/Nmin;
(ii) the consecutive positive spectral channels of the residual
peak satisfy the significance criterion Sdata ≥ Smin outlined in
Sect. 3.2.1. If one or multiple peaks are found in the residual that
satisfy these requirements for being new Gaussian component
candidates, a refit of the spectrum is performed by adding all of
these new candidates. For the refit, the initial Gaussian parameter
guesses for the accepted residual peaks are set to: the maximum
positive value of the residual peak for the amplitude; the spectral
channel containing the maximum positive value of the residual
peak for the mean position; the number of consecutive positive
channels of the residual peak for the FWHM parameter. After
a successful pass of all quality criteria, we adopt the new fit as
the new best fit if its AICc value is lower than the AICc value
of the previous best fit solution. If a new best fit was chosen, a
new iteration with a search for peaks in the residual of the new
best fit solution continues. We proceed to the next step if no new
positive peaks are found in the residual or no new best fit could
be assigned.

3. Optional: Check whether a negative residual feature
(Sect. 3.2.2) was introduced by the fit components. This check
is only performed if it is the first pass through the main loop
or a new best fit was assigned. Negative residual features can
be indicative of a poor fit with multiple signal peaks fit by a
single broad component. In case such a feature is present, we
try to replace the broadest Gaussian component at the place of
the residual feature with two narrower components. The initial
guesses for the two new narrow components are estimated from
the residual obtained if the broad component is removed, which
proceeds in a similar way as in the previous step. If the new fit
with the two narrow components passes all quality requirements
and its AICc value is lower than the AICc value of the current
best fit, we will assign it as the new best fit and repeat the search
for negative residual peaks. In case multiple negative residual
features are present in a spectrum, we deal with the features in
order of increasing negative residual values, that is we will first
try to replace the Gaussian component causing the residual fea-
ture that contains the most negative value. We proceed to the next
step if no new negative peaks are found in the residual or no new
best fit could be assigned.

4. Optional: Check for broad components (Sect. 3.2.2). If a
broad Gaussian component is present we will try to replace it in
this step with multiple narrower components. The number of nar-
row components and their initial parameter guesses are estimated
from the residual we get if the broadest component is removed
from the fit. If this results in a new best fit we will repeat this pro-
cedure with the resulting next broadest component. We proceed

best fit results
GaussPy

1. in-built quality
check

3.
new  

neg. residual  
peaks

2.
new

pos. residual  
peaks

Yes

Yes

No

Yes

Yes

No

try fit with
more

components

new
best fit

new
best fit

try fit with
more

components

Yes

No

Yes

No

new
best fit

try fit with
more

components

Yes

No

Yes

No

new
best fit

try fit with
fewer

components

4. 
new broad
component

5. 
new blended
components

goodness-
of-fit criterion

satisfied

first
iteration

No Yes

No
No

Yes

finalise results

No

Fig. 7. Flowchart outlining basic steps of our improved fitting routine.
The conditional stages in red correspond to optional stages that can be
selected by the user. See Sect. 3.2.3 for more details.

to the next step if no excessively broad component is identified
anymore, or no new best fit could be assigned.

5. Optional: Check for blended components (Sect. 3.2.2). If
this is the case we will try to refit the spectrum by in turn omit-
ting one of the blended components and checking whether the
AICc value of the resulting best fit is better than the AICc value
of the current best fit. Blended components are omitted in order
of increasing amplitude value, that is we will first try to refit the
spectrum by excluding the blended component with the lowest
amplitude value. If no new best fit is assigned or no blended
components are present in the spectrum we exit the improved
fitting procedure and finalise the fitting results if the normalised
residuals of the best fit solution show a normal distribution,
which we verify with two different normality tests (Sect. 3.2.1).
If this is not the case, we repeat the whole improved fitting

A78, page 10 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=7

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

procedure beginning with step 2, the search for positive peaks
in the residual.

We tested the performance of our improved fitting routine on
synthetic spectra and found that it yields a significant improve-
ment in the decomposition compared to the original GaussPy
algorithm. In Sect. 4 and Appendix B.6 we give a detailed dis-
cussion about the decomposition results for the synthetic spectra.

3.3. Spatially coherent refitting

So far all steps of the fitting routine treated each spectrum sepa-
rately and independently from its neighbours. Here we describe
a new routine that aims to also incorporate the information from
neighbouring spectra and tries to refit spectra according to this
information. Our routine proceeds iteratively and starts from the
fitting results obtained with the method outlined in the previ-
ous section (Sect. 3.2.3). This is different to algorithms such as
ScousePy, which first start with an averaged spectrum and use its
decomposition result to fit the individual spectra. We proceed in
a reverse manner: we first produce a sample of high quality fits
for each spectrum without regarding their neighbours and then
refit them, if it is deemed to be necessary, using the fit solutions
of the immediate neighbouring spectra11.

The spatial refitting proceeds in two phases. In phase 1, we
try to improve the fit solutions based on a flagging system, for
which the fitting results from the previous stage are checked
and flagged according to user-selected criteria. We subsequently
try to refit each flagged spectrum with the fit solutions from its
neighbours and thereby already introduce a limited form of local
spatial coherence. In phase 2, we use a weighting system to try
to enforce spatial coherence more globally. We check for the
entire data set if the Gaussian components of each spectrum are
spatially consistent with the neighbouring spectra, by compar-
ing the centroid positions of the Gaussian components. We then
try to refit spectra whose Gaussian components show centroid
velocity values that are inconsistent with the fit solutions from
neighbouring spectra.

3.3.1. Phase 1: Refitting of the flagged fits

The steps of the first phase of the spatially coherent refitting
method are outlined in Fig. 8. The idea here is to determine
which of the spectra need to be refit based on flags set by the
user. We try to refit all spectra that show features that do not
satisfy the quality requirements imposed on the fits (these are
also retained as flags indicating bad quality fits in case the spec-
trum cannot be successfully refit). Depending on the data set, the
user might not always want to flag or refit spectra that show one
or more of these features. Therefore, all of the following flags
can be chosen as required by the user. In the current version of
GaussPy+, the following features can be flagged by the user (see
Sect. 3.2.2 for more explanation about the flags):
(i) Fneg. res. peak: The presence of negative peaks in the residual.

(ii) FΘ: Gaussian components with a broad FWHM value. For
the spatial refitting we additionally flag a component as
broad if it is broader by a user-defined factor (fΘ,max) than
the broadest component in more than half of its neighbours.

(iii) Fblended: The presence of blended Gaussian components in
the fit.

11 In the current implementation of GaussPy+we only consider directly
neighbouring spectra, whereas algorithms such as ScousePy allow the
user to also include information from larger spatial areas.

best fit results
GaussPy+

flag spectra

A

B

select spectra
for refit

refitting of
selected
spectra

No

new
refits

finalise fitting
results

No

new
best fit

A

B

1. try refit of individual
components with fit

solution of neighbours

2. try refit of complete
spectrum with fit

solution of neighbours

3. try refit by grouping
fit solution of
neighbours

No

new
best fit

Refit of individual
selected spectrum

Yes

Yes

Yes

Fig. 8. Flowchart outlining the steps of the first phase of our spatially
coherent refitting routine. See Sect. 3.3.1 for more details.

(iv) Fresidual: Fits whose normalised residual values do not pass
the tests for normality.

(v) FNcomp : The number of components Ncomp differs significantly
from its neighbours.

Flags (i)–(v) are recomputed in each new iteration. We then try
to refit each flagged spectrum with the help of one or all of the
best fit solutions of its neighbouring unflagged spectra. In the
default settings of the algorithm we try to refit all flagged spec-
tra by using fit solutions from unflagged neighbouring spectra.
At maximum, this provides eight new different fit solutions for
the flagged spectrum (if all of its eight neighbouring spectra are
unflagged). If there are multiple unflagged neighbours, they get
ranked according to their χ2

red values, and the neighbouring fit
solution with the lowest χ2

red value is used first.
It is also possible to only flag fit solutions without refitting

them, though this has to be selected by the user. This might be
useful, for instance, if users want to exclude neighbouring fit
solutions whose normalised residuals did not satisfy the normal-
ity tests as templates for the refit but do not want to refit these
spectra themselves.

The refitting of an individual flagged spectrum proceeds in
the following way (see right part of Fig. 8):

1. Use the fit solutions of unflagged neighbouring spectra
to refit individual components of the flagged spectrum. Spec-
tra that are flagged as having negative residual features, broad,
or blended components might show a good fit solution apart
from the flagged features. Therefore we first try to replace the
Gaussian components of such flagged features by using the
Gaussian components of neighbouring unflagged fit solutions
that cover the same region in the spectrum as new input guesses.
The refit attempt is then performed for the entire spectrum by

A78, page 11 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=8

A&A 628, A78 (2019)

Centroid Position

FW
H

M

Fig. 9. Illustration of the grouping routine. Black points indicate cen-
troid (µ) and FWHM (Θ) values of Gaussian components from the best
fit solutions of unflagged neighbouring spectra. Blue shaded areas indi-
cate the results of the first grouping, in which data points are only sep-
arated according to their µ values. Red shaded areas mark the results
of the second grouping in which data points are additionally separated
according to their Θ values. Blue squares and red stars indicate the ini-
tial guesses for the refitting with the first and second grouping approach,
respectively.

combining these new initial guesses from a neighbouring fit
solution with the remaining fit components of the old fit solution
of the spectrum that were not affected by the flagged feature. If
multiple regions of a spectrum are flagged with different flags we
will try to refit the flagged features in the order of: negative resid-
ual feature, broad component, and blended components. As soon
as a flagged feature is successfully refit we stop the refitting iter-
ation, even if other flagged features should still be present in the
spectrum. We impose no selection criteria on the neighbouring
Gaussian components, that is we will in turn use all unflagged
neighbouring fit solutions as new initial guesses, starting with
the fit solution that has the lowest χ2

red value. If one of the input
guesses of the unflagged neighbours leads to a new improved fit
the refitting of the flagged spectrum is successfully terminated,
otherwise we proceed with the next step.

2. Use the fit solutions of unflagged neighbouring spectra to
refit the complete flagged spectrum. In this step all fit compo-
nents of a neighbouring spectrum are used as new input guesses
for refitting the entire spectrum. We again loop through all
unflagged neighbouring fit solutions, starting with the one that
has the lowest χ2

red value. The refitting of the flagged spectrum
is successfully terminated as soon as one of the neighbouring
fit solutions leads to a new improved fit, otherwise we continue
with the next step.

3. Obtain a new set of fit parameters from the fit solutions
of all unflagged neighbouring spectra, by grouping and averag-
ing the parameters of all their Gaussian components in a param-
eter space spanned by the fitted velocity centroid and FWHM
values. Figure 9 illustrates how the grouping proceeds. First,
the grouping is only performed for the µ values (blue shaded
areas). The requirement for group membership is that data points
are at maximum located at a distance of ∆µmax (default value:
2 channels) from any other point of this group. We require a
minimum group membership of two points, which means that
single points that do not belong to any group are treated as
outliers. The blue points and shaded areas show the new fit-
ting constraints used for the refitting. As initial guesses for the
amplitude, FWHM value and centroid position we use the cor-
responding average values of all the data points belonging to a
group. The fitting constraints for the centroid positions are based

on the extent of the groups along the µ axis. For each ampli-
tude value we require that it has a positive value and set its
maximum limit to the maximum data point in the original spec-
trum that occurs in the range that encompasses all µ values of
this group multiplied by a user-defined factor fa. FWHM val-
ues are not allowed to be smaller than the user-defined param-
eter Θmin but there is no upper constraint for their values. If
this first grouping approach does not lead to a successful refit,
we use a second grouping approach that additionally groups the
data points according to their FWHM values (red shaded areas in
Fig. 9). A group membership for a data point is established if its
µ and Θ values are at maximum located at a distance of ∆µmax
(default value: 2 channels) and ∆Θmax (default value: 4 chan-
nels), respectively, from any other point of this group. The points
in each group are then averaged in a similar way as for the first
grouping approach and supplied as new fit parameters for the
refitting.

Grouping only by the centroid values has the advantage that
it will try to fit the spectrum with the least amount of components
inferred from its neighbours. A disadvantage is that outliers in
the FWHM regime can negatively influence the initial fit values.
The second grouping approach should be able to deal better with
the fidelity of the data even though some of the initial guesses
for Gaussian fits could overlap heavily.

For the decision of whether to accept a refit as the new fit
solution we define a total flag value Ftot that increases by one for
each of the user-selected flags the fit solution does not satisfy.
For the proposed new fit solutions, the total flag value increases
in addition by one for each flagged criterion that got worse than
in the current best fit solution, that is for an increase in the
number of blended components or negative residual features,
broad components that got broader, smaller p-values for the
null hypothesis testing for normally-distributed residuals, and a
greater difference in the number of components compared to the
neighbouring fit solutions.

In the stage where all spectra were treated independently
(Sect. 3.2.3), the decision to accept a fit model was made via
the AICc. In the spatial refitting phase this decision is mainly
guided by the comparison of the total flag value of the new fit
solution (F new

tot) with the old best fit solution (F old
tot). There are

three possible scenarios:
– F new

tot > F old
tot . In this case the new fit solution is rejected.

– F new
tot = F old

tot . The new fit solution is accepted if its AICc
value is smaller than the AICc value for the best fit solution
we started out with.

– F new
tot < F old

tot . The new fit solution is accepted if the
data points of the normalised residual pass the normality
tests.

In the last case we have to test whether new fit solutions incor-
rectly decreased F new

tot by removing valid fit components. For
example, both Fblended and FΘ could be reduced by one if a broad
component is deleted. To prevent such incorrect fit solutions we
require that the normalised residual resembles a Gaussian distri-
bution, which we check with two different normality tests (see
Sect. 3.2.1). The null hypothesis of normally distributed resid-
ual values gets rejected if the p-value is less than a user-defined
threshold (default: 1%), in which case we do not accept the new
fit solution.

3.3.2. Phase 2: Refitting of the spatially incoherent fits

In the second phase of the spatially coherent refitting, we check
for coherence of the centroid positions of the fitted Gaussian
components for all spectra. The motivation for this step is that

A78, page 12 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=9

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

best fit results
GaussPy+

select
solution w/

bigger weight

A

B

try refit of flagged
spectra with fit
solution from
neighbours

check spatial
coherence of
centroids for
all spectra

No

new
refits

finalise fitting
results

A

grouping in four
main directions
& computing of

weights

Spatial coherence check
of centroids for an

individual spectrum

Yes

weight
threshold
crossed

multiple
solutions for

feature

feature
present in
spectrum

No

reduce
threshold

B

No

Yes

Yes

flag spectrum
for refit

No

Yes

No

Yes

Fig. 10. Flowchart outlining the basic steps of the second phase of the
spatial refitting routine. See Sect. 3.3.2 for more details.

we would expect coherence in the centroid positions of the fitted
Gaussian components for resolved extended objects, especially
for oversampled observations where the size of a pixel is smaller
than the beam size or resolution element.

The spatial consistency check, in which we determine whether
a spectrum should contain Gaussian components in specific spec-
tral ranges based on the fitting results from neighbouring spec-
tra, proceeds in an iterative way. For that, we use 16 neighbours
along the 4 main directions (see panel a in Fig. 11)12. For simplic-
ity we do not consider the off-diagonal pixels.

Users can specify the ratio of the weight of the closest neigh-
bour (w1) to the weight of the neighbour located one pixel far-
ther away (w2) with the parameter fw = w1/w2 (default value:
2). In the default settings the contribution of the neighbours is
inversely proportional to their distance to the central spectrum
(see left panel of Fig. 11). The weights w1 and w2 are normalised
so that 2w1 +2w2 = 1, which means that along the horizontal and
vertical direction the weights sum up to a value of 1. Setting the
parameter fw to higher values than the default value has the effect
of decreasing the contribution of neighbours that are located at a
distance of two pixels and thus puts even more emphasis on the
closest neighbours. In case the central spectrum has Gaussian
components whose centroid positions do not match with what
would be expected from the fit results of its neighbouring spec-

12 This number is reduced accordingly in case neighbouring spectra are
masked out or the central spectrum happens to be close to or at the border
of the image.

w1

2

w2 w1

a) b) c)

w1

2

w1

2

w1

2

w1 w2

w1

w1

w2

w2

w2

2

w2

2

w2

2

w2

2

Fig. 11. Illustration of phase two of the spatial refitting routine of
GaussPy+. Each 5 × 5 square shows a central spectrum (in white) and
its surrounding neighbours. White squares that are crossed out are not
considered. Left panel: Principal directions for which we check for con-
sistency of the centroid positions and shows the applied weights w1 and
w2 attached to the neighbouring spectra. Middle and right panels: Two
different example cases with simple fits of one and two Gaussian com-
ponents shaded in blue and red, respectively. Based on the fits of the
neighbouring spectra we would try to refit the central spectrum in the
first case (panel b) with one Gaussian component, whereas the central
spectrum in the second case (panel c) is already consistent with what we
would expect from our spatial consistency check of the centroid posi-
tions. See Sect. 3.3.2 for more details.

tra, we try to refit the spectrum with a better-matching fit solution
from one of its neighbours.

In the following, we outline the spatial consistency check of
the centroid positions in more detail (see also Fig. 10):

1. Check for a consistent feature in the neighbouring spec-
tra along any of the main directions indicated in the left panel
of Fig. 11. For each of the four directions, we group the cen-
troid positions of the fitted Gaussian components as described
in section Sect. 3.3.1 and shown schematically in Fig. 9 (blue
hatched areas). We perform the grouping in each direction rather
than globally to simplify the grouping, which might get too con-
fused if all 16 neighbours are considered together.

2. Compute the total weightWtot for each group of centroid
position data points by summing up the weights of the neigh-
bouring spectra that contributed data points to the group and
check if it exceeds a predefined weight thresholdW.

3. Check whether the central spectrum has Gaussian com-
ponents compatible with the required Gaussian components
inferred from its neighbours (i.e. all centroid position groups that
reached the required weight threshold W). We try to refit the
central spectrum with the fit solution from individual neighbours
if its Gaussian components are incompatible with the inferred
required components.

In the default settings of GaussPy+, the first set of iterations
use a weight threshold ofW = 1 − w2; this threshold can only
be reached in the horizontal or vertical direction if two imme-
diate spectra and an additional spectrum further out contributed
data points to the group, that is show a common feature. The
threshold of W = 1 − w2 is used as long as it leads to new
successful refits of spectra. In case no new refits were possible,
W is reduced again by a value of w2 so that the new thresh-
old isW = 1 − 2 · w2. This iterative procedure continues until
W gets below a user defined minimum thresholdWmin (default
value: 0.5).

We only start the refitting procedure after we looped through
all spectra of the data set and determined the spatial consistency
of the centroid position values for all of them. This means that
the fit solutions are not dynamically updated or propagating out-
wards during an iteration. New fit solutions are accepted based
on the flagging system introduced in the previous section. We
add a new flag in this phase that increases the total flag value
Ftot by a value of 2 if the fit solution is inconsistent with the

A78, page 13 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=10
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=11

A&A 628, A78 (2019)

required centroid positions inferred from the spatial consistency
check.

Panels b and c of Fig. 11 show example cases for the spa-
tial consistency check of centroid values for the case of a simple
emission line feature. Based on the fit solutions in the neigh-
bouring spectra we want to establish whether a one- or two-
component fit should be used for the central spectrum. For this
example we use the default settings of the algorithm, that is
Wmin = 0.5 and fw = 2, which sets w1 = 1/3 and w2 = 1/6.

For the case depicted in panel b the required weight threshold
for the first set of iterations isW = 1−w1 = 5/6. TheWtot value
for the vertical and horizontal direction would reach this thresh-
old, giving us two conflicting fit solutions for the central spec-
trum. In such a case, we recomputeWtot for the fit solutions by
grouping the eight immediate surrounding neighbouring spectra
together and choose the fit solution with the higherWtot value.
For the setup depicted in panel b the fit solution with one Gaus-
sian component would be selected, as the immediate surround-
ing neighbours with this fit solution have a bigger total weight of
Wtot = 2w1 + 3w1/

√
2 (compared toWtot = 2w1 + w1/

√
2 for

the two-component fit solution)13. We would thus try to refit the
central spectrum with a fit solution that uses only one Gaussian
component. However, the fit solution for the central spectrum is
only updated if the total flag value for the fit solution using one
component is lower or equal than the total flag value for the fit
solution using two components in addition to the requirements
that the distribution of the residual data points resembles a nor-
mal distribution (see Sect. 3.3.1).

For the example case depicted in panel c of Fig. 11 none of
the four main directions would contain fit solutions that pass a
weight threshold of W = 5/6. However, both the vertical and
the diagonal direction from upper left to lower right would reach
a weight threshold of W = 4/6, which is used in the second
round of iterations. The total weight for the single component fit
solution in the diagonal direction (Wtot = 2·w1/

√
2+2·w2/

√
2 ≈

0.7) is bigger than the total weight for the two component fit
solution in the vertical direction (Wtot = w1 + 2 · w2 = 2/3)
and thus gets selected. Since the central spectrum already has a
single component fit we would not try to refit it.

4. Performance of GaussPy+ on samples of synthetic
spectra

In this section, we compare the decomposition results of the
improved fitting routine of GaussPy+ (Sect. 3.2.3) with the orig-
inal GaussPy algorithm. We applied both algorithms on samples
of synthetic spectra containing: white noise (A); white noise and
signal (B); white noise, signal, and negative noise spikes (C);
white noise, weak signal, and negative noise spikes (D). We then
determine how well the two algorithms were able to recover the
mean position, amplitudes and FWHM values of the Gaussian
components used to create the synthetic spectra. For more details
about the synthetic spectra, see Appendix B.1.

To facilitate the comparison, we supplied the results from the
noise calculation of GaussPy+ (Sect. 3.1.1) also to the decom-
position with the original GaussPy algorithm. We also use the
same S/N thresholds for the original spectrum (SNR1 = 3) and

13 In case both fit solutions have the same total weight as calculated
from its immediate surrounding neighbours and this way to decide on
the fit solutions thus should be inconclusive, we repeat this total weight
calculation for all 16 considered neighbours (coloured squares in panel a
of Fig. 11). If this is also inconclusive we choose the fit solution that
uses fewer Gaussian components.

Table 1. Percentage of correctly and incorrectly identified mean posi-
tions of Gaussian components for decomposition runs on samples of
synthetic spectra.

GaussPy GaussPy+

Sample Correct (a) Incorrect (b) Correct (a) Incorrect (b)

A – 2.8% – 0.0%
B 78.0% 3.9% 93.7% 1.6%
C 72.6% 3.7% 93.4% 1.8%
D 29.4% 6.5% 81.7% 4.5%

Notes. (a)We define the mean position of a Gaussian component as cor-
rectly identified if it is within ±2 spectral channels of the true value.
(b)We define the fraction of incorrect identifications for sample A as all
spectra for which noise features were fitted. The percentage of incorrect
identifications for sample B–D refers to the fraction of fitted Gaussian
components whose mean position was located at a distance of more than
4 spectral channels to the true value.

the second derivative of the smoothed spectrum (SNR2 = 3) for
the decompositions with GaussPy and GaussPy+. We use the
smoothing parameters α1 and α2 we obtained from the training
sets decomposed with the method outlined in Sect. 3.1.414 (see
Appendix B.5 for more details). We left all additional parameters
of GaussPy+ at their default settings.

Table 1 presents quality metrics of the results of the decom-
position runs with GaussPy and GaussPy+ for the four samples
of synthetic spectra. The percentage of correct detections refers
to the number of Gaussian components that were fitted within ±2
spectral channels of the true position. For a correct identification
of a peak position we do not consider whether the amplitude and
FWHM values of the Gaussian component were fitted correctly.
The fraction of incorrect detections refers either to all spectra for
which at least one noise feature was fitted (in case of sample A)
or the percentage of Gaussian fit components that were placed at
a distance of more than 4 spectral channels away from the true
position.

Table 1 demonstrates that GaussPy+ manages to fit signifi-
cantly more Gaussian components at the correct positions in the
spectrum than GaussPy, while decreasing the fraction of incor-
rect identifications15. This improvement is especially striking for
weak signal peaks (sample D), where the number of correctly
placed Gaussian fit components increased by more than a factor
of 2.7 in the GaussPy+ decomposition. The performance of the
GaussPy+ decomposition is also not affected by the presence of
negative noise spikes in the spectrum (sample C), whereas this has
a more significant impact on the performance of GaussPy. More-
over, GaussPy+ did not incorrectly fit any Gaussian components
in sample A, whereas GaussPy mistook noise features as signal
peaks for 2.8% of the spectra.

Figure 12 compares the fitted Gaussian parameters to the
true values used to create the synthetic spectra. The GaussPy+
decomposition results for sample B, C, and D are shown in blue,
red, and orange, respectively and the corresponding GaussPy
results are indicated with the black line. The left column of

14 For sample A we use the same smoothing parameters as for
sample D.
15 A limiting factor for the performance of GaussPy+ was that the syn-
thetic spectra were not set up to show spatial coherence. Thus, the algo-
rithm will have had difficulty in the decomposition of some spectra to
correctly decide whether a structure might be blended and better fit by
multiple peaks.

A78, page 14 of 35

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

0

1500

3000

4500

6000

C
ou

nt
s

sample B
GaussPy+
GaussPy

0

1500

3000

4500

6000

C
ou

nt
s

sample C
GaussPy+
GaussPy

2 1 0 1 2
 - true

0

1500

3000

4500

6000

C
ou

nt
s

0.6 0.8 1.0 1.2 1.4
a / atrue

sample D
GaussPy+
GaussPy

0.6 0.8 1.0 1.2 1.4
 / true

Fig. 12. Comparison of the performance results of decompositions
with GaussPy+ and GaussPy for different samples of synthetic spectra.
The distribution shows how the fitted parameter values (mean position
µ, amplitude a, and FWHM Θ from left to right, respectively) com-
pare to the true parameter values used to create the synthetic spectra.
The unfilled and coloured histograms show the distribution of fit com-
ponents obtained with GaussPy and GaussPy+, respectively. Hatched
areas correspond to the interquartile ranges and the vertical lines indi-
cate the median value of the distribution (coloured and black for the
GaussPy+ and GaussPy results, respectively. The improved fitting rou-
tine of GaussPy+ leads to a significant increase of correctly fitted
parameters (see also Table 1 and Sect. 4 for more details).

panels shows the distribution of fitted mean positions from
which the true mean position was subtracted. As already demon-
strated in Table 1, the vast majority of components were fitted
close to the true mean position. There were fewer detected peaks
in sample D because the signal in these spectra was constructed
to be close to or below the detection limit.

The middle and right column of panels in Fig. 12 show the
distribution of amplitude and FWHM values, respectively, both
normalised by the corresponding true parameter values. In these
distributions we only included those fitted Gaussian components
whose mean position was less than two channels away from the
true mean position of the corresponding Gaussian component in
the synthetic spectrum (corresponding to the percentages of cor-
rectly identified components in Table 1). For all three samples of
synthetic spectra the vast majority of fitted parameters are within
±10% of the true values for both decompositions, but due to the
higher amount of correctly identified peak positions, GaussPy+
manages to fit many more components correctly. Moreover, for
sample D the median values of the distribution are closer to the
true values for the GaussPy+ decomposition results. In contrast,
GaussPy tends to fit the spectra of sample D with components
that have too large amplitude values and too narrow linewidths,
as demonstrated from the shape of the distributions and their
median values.

We also found that the decomposition performance of
GaussPy+ shows much less dependence on the number of sig-
nal peaks, their S/N, their linewidth, or their closest distance to a
neighbouring signal peak than the decomposition with GaussPy.
See Appendix B.6 for a discussion about these comparisons.

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

a)
All spectral channels

b)
Moment masking

55.3°55.4°55.5°55.6°
Galactic Longitude

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

c)
Clipped below 3 × rms

55.3°55.4°55.5°55.6°
Galactic Longitude

d)
clipped below 5 × rms

5

10

15

20

25

30

35

40

W
C

O
 [K

 k
m

/s
]

Fig. 13. Zeroth moment maps for a region in the outer parts of the
GRS. Panels a–d: Results obtained by summing up all spectral chan-
nels, applying a moment masking technique (see Sect. 5.1 for details),
and clipping all spectral channels with values below 3×σrms and 5×σrms,
respectively. The contour indicates a WCO level of 5 K km s−1.

5. Performance of GaussPy+ on a GRS test field

In this section, we focus on a sub-region of the GRS data set
and perform a detailed analysis and discussion of the decomposi-
tion results with GaussPy+ to showcase its performance. The test
field we chose is a 0.43◦×0.37◦ region located towards the outer
part of the GRS coverage at Galactic coordinates of l = 55.48◦
and b = 0.19◦. This GRS region contains 4200 spectra with 424
spectral channels that cover vLSR values of −5 to 85 km s−1. The
chosen region contains three molecular clouds (G055.64+00.14,
G055.39+00.14, G055.34+00.19) and 19 clumps as identified by
Rathborne et al. (2009).

In the following sections we will first describe the best way
to compare flux between the original data set and the decomposi-
tion and show the improvements we gain by using the noise esti-
mation technique built into GaussPy+. We then make a detailed
comparison between the decomposition results of GaussPy and
GaussPy+. Details about the execution time for the entire decom-
position and the performance of the spatially coherent refitting can
be found in Appendices C.2 and C.5, respectively.

5.1. Optimal flux estimate for fair comparisons between the
data set and decomposition results

One measure of the quality of the decomposition results is the
fraction of recovered flux from the comparison of zeroth moment
maps; we aim at inspecting this fraction in Sect. 5.3. How-
ever, imperfect baseline corrections and noise spikes can lead to
wrong flux estimates if all spectral channels are integrated along
the spectral axis. It is therefore recommended to mask out all
spectral channels that do not contain signal.

For our comparisons of the recovered flux in the decomposi-
tion (Sect. 5.3) we opted to use the moment masking technique
outlined in Dame (2011). The basic idea of moment masking is
to mask out spectral channels based on S/N cuts on a spatially
and spectrally smoothed version of the original data set. For the
smoothed data cube, Dame (2011) suggests to degrade the spa-
tial resolution by a factor of 2 and degrade the spectral resolution

A78, page 15 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=12
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=13

A&A 628, A78 (2019)

to the width of the narrowest spectral lines contained in the data
set. Dame (2011) found that a threshold of 5×σrms, smoothed gives
the best results, where σrms, smoothed refers to the rms-noise of the
smoothed spectra. If a spectral channel in the smoothed cube
exceeds this S/N threshold, we unmask this channel and all chan-
nels that were within the spatial and spectral smoothing kernels
in the original datacube. Moment masking thus allows us to also
include spectral channels whose value has low S/N levels and
would be masked out if we based the clipping of spectral chan-
nels on a S/N threshold of the original data set. Moreover, the
high S/N requirement for spectral channels of the smoothed data
set guarantees that most of the channels containing noise are
masked out.

For the moment masking of the GRS test field, we created
a smoothed version of the data cube by smoothing the original
data set spatially with a Gaussian kernel with a FWHM value
of 92′′ (corresponding to twice the beam size); spectrally, we
smoothed the data set with a Gaussian kernel with a FWHM
value of 0.42 km s−1, which corresponds to twice the spectral res-
olution or 2 spectral channels. We then masked out all spectral
channels whose value in the smoothed data cube was below a
S/N threshold of 5.

Figure 13 shows zeroth moment maps of our test region
obtained by: summing up all spectral channels (panel a); using the
moment masking technique described above (panel b); masking
out all spectral channels with S/N values below 3 and 5 (panel c
and d, respectively). The contour in the panels marks a value of
WCO = 5 K km s−1, with WCO being the integrated CO intensity
along the spectral axis. By summing up all intensity values along
the spectral axis we also include a significant contribution from
noise, which is clearly visible in the fraying of the contour line in
panel a of Fig. 13. If we mask out all spectral channels with S/N
values lower than 3 or 5 times theσrms (panels c and d), we also cut
away a significant fraction of real signal, leading to a severe under-
estimate of the total flux contained in the region. Conversely, the
zeroth moment map constructed with the moment masking tech-
nique (panel b in Fig. 13) replicates well the flux distribution of
panel a, and excludes most of the noise contributions.

We quantify the recovered flux by summing up all intensity
values above a value of 5 K km s−1 (contours in Fig. 13). The
summed up value inside the contour of the map obtained with
the moment masking technique is only 8% smaller than the cor-
responding value of the map in which we sum up all spectral
channels. This small difference is likely due to contributions of
spectral channels containing only noise that are also included
in the zeroth moment map shown in panel a in Fig. 13. In con-
trast, the summed up value inside the contours of panels c and
d of Fig. 13 is smaller by 33% and 56% respectively than the
summed up value for the corresponding contour in panel a.

We conclude that by summing up all spectral channels or
masking out spectral channels via a S/N threshold based on
the original data set we would either slightly overestimate or
severely underestimate the flux contained in the data set, respec-
tively. On the other hand, the moment masking technique gives
a good estimate of the total flux contained in a data set and we
therefore use it in comparisons of the flux between the decompo-
sition results and the original data set. We assume here implicitly
that noise contributions in the remaining spectral channels aver-
age out when the intensity values are integrated.

5.2. Noise map

A good estimate of the noise is crucial for obtaining good fitting
results if parameters of the decomposition technique are based

55.3°55.4°55.5°55.6°
Galactic Longitude

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

Automated noise estimation

55.3°55.4°55.5°55.6°
Galactic Longitude

Fixed channel fraction

0.10

0.15

0.20

0.25

0.30

0.35

(T
* A
) [

K
]

Fig. 14. Noise maps for the region in Fig. 13. Left: Results from the
automated noise estimation technique discussed in Sect. 3.1.1. Right:
Results from using a fixed amount of spectral channels for the noise
calculation.

on S/N thresholds (see Sect. 3.1.1). Figure 14 shows noise maps
for the region depicted in Fig. 13 that were obtained with the
noise estimation routine of GaussPy+ (panel a) and a much sim-
pler approach that uses a fixed number of channels to calculate
the σrms value (panel b). For the latter approach we used 24 spec-
tral channels from 80−85 km s−1 (corresponding to ∼6% of all
available spectral channels), similar as it was done in Jackson
et al. (2006) for this region. For the GRS data set, the fixed chan-
nel approach can be problematic, since there is not really a chan-
nel interval that is guaranteed to be emission-free over the entire
survey region. It can be clearly seen that the GaussPy+ noise
estimation routine gives a much better estimate of the σrms val-
ues, as artefacts from the map-making procedures become more
pronounced. There is also a clear gradient in the σ(T ∗A) values in
this region, which makes the GaussPy+ decomposition challeng-
ing, since it uses the same decomposition parameters throughout
the whole region. We would thus expect to have more difficulty
in the decomposition of spectra with high σ(T ∗A) values, leading
to small S/N values of the signal peaks in these spectra.

Panel a in Fig. 15 displays histograms of the noise maps of
Fig. 14; the automated noise estimate shows a clear bimodal dis-
tribution, whereas the fixed channel fraction approach is more
influenced by random fluctuations of the noise in the limited
fixed number of channels used for the noise calculation. The
median σ(T ∗A) value of our automated noise estimation is only
∼6% higher than the median value obtained via the fixed chan-
nel approach, so globally the two methods give similar results.
However, Fig. 14 shows that there are considerable differences
on the individual line of sight scale, which will lead to large dif-
ferences in the decomposition.

To quantify the impact of the estimated noise on the fit-
ting results, we performed two decomposition runs with the
improved fitting routine of GaussPy+ (Sect. 3.2.3) with iden-
tical settings but different noise estimates corresponding to the
maps of Fig. 14. Panel b in Fig. 15 shows the difference between
the number of fitted Gaussian components for the noise estimate
using a fixed fraction of channels and the automated routine of
GaussPy+. About 26% of the spectra in the test field get fitted
with a different number of Gaussian components and the total
number of fitted components increases by ∼9% for the fixed
channel fraction approach. Applying the flagging procedure of
GaussPy+ with its default settings (described in Sect. 3.3.1)
to the two decompositions, we get that 43.8% and 51.2% of
the fitted spectra would be selected for refitting if the auto-
mated noise estimate and fixed channel approach are used,
respectively. Compared to the GaussPy+ decomposition with
the automated noise estimate, in the fixed channel approach the
number of spectra flagged as having a number of components

A78, page 16 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=14

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

0.1 0.2 0.3 0.4
(T*

A) [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
um

be
r o

f s
pe

ct
ra

 [×
10

2]

rms, ANE

rms, FCF

55.3°55.4°55.5°55.6°
Galactic Longitude

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

4
3
2
1

0
1
2
3
4

N
co

m
p,

FC
F
 -

N
co

m
p,

A
N

E

Fig. 15. Left: Histogram of the σrms values shown in Fig. 14 for the automated noise estimation of GaussPy+ (ANE, blue) and the fixed channel
fraction approach (FCF, black). The dotted vertical lines show the corresponding median values of the two distributions. Right: Map showing the
difference in the number of fitted components for the automated noise estimation (Ncomp,ANE) and the fixed channel fraction approach (Ncomp,FCF).

incompatible with their neighbours increase from 1.5% to 6.1%
and the number of spectra having normalised residual values
not matching a Gaussian distribution increases from 20.0% to
25.1%. Both of these increased numbers of flagged spectra
are a good indication that the noise estimate using the fixed
fraction of channels is yielding poorer decomposition results
than the automated noise estimation routine incorporated in
GaussPy+.

5.3. Comparison between the decomposition runs with
GaussPy and GaussPy+

In this section we present decomposition runs of the GRS test field
obtained with the original GaussPy algorithm and GaussPy+.
The different GaussPy+ runs represent results after different
stages of the algorithm (improved fitting routine, phase 1 and 2
of the spatially coherent refitting, referred to as Stage 1–3,
respectively) to better illustrate the changes and improvements
obtained in each individual stage.

We decomposed 250 randomly chosen spectra of the test
field with the method outlined in Sect. 3.1.4 to create the training
set needed to infer optimal smoothing parameters for GaussPy.
Lindner et al. (2015) found that having two different smooth-
ing parameters – one parameter with a smaller value that accen-
tuates the narrower peaks and another parameter with a higher
value that is more suitable for broader peaks – leads to huge
improvements in the decomposition of HI spectra. We also found
that a two-phase decomposition approach using two different
smoothing parameters α1 and α2 yields better decomposition
results for the CO emission line spectra of the GRS data set. For
the same training set, the F1 score (see Sect. 2.1) for the one-
phase and two-phase decomposition approaches was 67.5% and
74.7%, respectively. We therefore used the smoothing parame-
ters inferred from the two-phase decomposition of the training
set, which yielded values of α1 = 2.89 and α2 = 6.65. For the
GaussPy decomposition we set SNR1 = SNR2 = 3. We left all
GaussPy+ parameters at their default settings, with the exception
of setting ∆µmax = 4 for Stage 3.

Panels a–d in Fig. 16 show zeroth moment maps of the
decomposition runs with the original GaussPy algorithm sup-
plied with the improved noise estimation (panel a of Fig. 14), and
GaussPy+ after the improved fitting stage (panel b; Sect. 3.2.3),
and after phase 1 (panel c; Sect. 3.3.1) and phase 2 (panel d;
Sect. 3.3.2) of the spatially coherent refitting. The zeroth
moment maps were obtained by masking the same spectral chan-
nels as for the moment masked data in panel b of Fig. 13.

Panels e–h in Fig. 16 show the corresponding zeroth moment
maps of the residual. In all three stages of GaussPy+ the per-
formance in terms of the recovered flux is much better for the
regions with lower S/N emission than the GaussPy decomposi-
tion, which was already noticeable in the case of synthetic spec-
tra (Sect. 4, Appendices B.6 and B.7). For regions with high S/N,
GaussPy and all stages of GaussPy+ perform very well16.

The maps in panels i–l of Fig. 13 show the χ2
red values for the

fits, with the goodness of fit calculation restricted to the channels
estimated to contain signal (see Sect. 3.1.2). We can see a clear
improvement towards χ2

red values closer to 1 for the GaussPy+
decompositions compared to the GaussPy run. In Appendix E
we demonstrate the importance of restricting the calculation of
the χ2

red values to regions in the spectrum that contain signal for
the GRS test field.

The performance in recovered flux does not significantly
change in the spatially coherent refitting phases of GaussPy+,
since the focus in these phases is shifted to reducing flagged fea-
tures and making the fit results compatible with the neighbours
instead of minimising the residual. Therefore the zeroth moment,
residual and χ2

red maps that show the quality of the fit results
in terms of recovered flux do not change significantly between
Stage 1 and Stage 3 of the GaussPy+ decomposition.

We can see more variation between panels m–p in Fig. 16,
which show maps of the number of fitted Gaussian compo-
nents per spectrum for each decomposition run. In the GaussPy+
decompositions the number of fitted components increases com-
pared to the GaussPy run, which is due to the fitting of weaker
emission lines in spectra containing increased noise levels (cf.
panels e–h) and the segmentation of very broad components into
individual peaks. There is also a clear progression towards more
spatial coherence from panels m–p.

Figure 17 further demonstrates this transition towards spa-
tial coherence by comparing the fitting results of GaussPy and
Stage 1–3 of GaussPy+ for nine neighbouring spectra from the
GRS test field. The signal peaks in these spectra show only mod-
erate S/N and GaussPy therefore tends to fit broad Gaussian
components over most of the signal peaks. Stage 1 of GaussPy+
already manages to improve upon these fitting results by separat-
ing the emission into more individual peaks; this improvement of

16 We caution that while the recovered flux is an essential criterion for
the performance of the fit it may not give a good handle on the quality
of the fits themselves. For example, the spectra might not be spatially
coherent and might use many blended and broad components to fit the
spectrum.

A78, page 17 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=15

A&A 628, A78 (2019)

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

a)

GaussPy

b)

Stage 1: after improved
fitting routine (3.2.3)

c)

GaussPy+

Stage 2: after spatially coherent
refitting - phase 1 (3.3.1)

d)

Stage 3: after spatially coherent
refitting - phase 2 (3.3.2)

5

10

15

20

25

30

35

40

W
C

O
 [K

 k
m

/s
]

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

e) f) g) h)

0

2

4

6

8

W
C

O
 [K

 k
m

/s
]

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

i) j) k) l)

0.5

1.0

1.5

2.0

2.5

3.0

2 re
d

55.3°55.4°55.5°55.6°
Galactic Longitude

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

m)

55.3°55.4°55.5°55.6°
Galactic Longitude

n)

55.3°55.4°55.5°55.6°
Galactic Longitude

o)

55.3°55.4°55.5°55.6°
Galactic Longitude

p)

0

1

2

3

4

5

6

N
co

m
p

Fig. 16. From left to right: Decomposition results for the original GaussPy algorithm and three stages of GaussPy+ (improved fitting routine,
phase 1 and 2 of the spatially coherent refitting). From top to bottom: Zeroth moment maps of the decomposition results; residual maps obtained
by comparing the zeroth moment maps of the decomposition with panel b in Fig. 13; maps showing the χ2

red values for the fit, with the goodness
of fit calculation restricted to the channels estimated to contain signal (see Sect. 3.1.2); and maps of the number of Gaussian fit components per
spectrum. All panels are overplotted with the contour from panel b in Fig. 13. The GaussPy+ decompositions show a clear trend towards more
spatial coherence and an improvement in the quality of the fits for the regions with lower emission or higher noise levels.

the decomposition results can also be seen in the decreased resid-
uals shown in the smaller panels. Stage 2 of GaussPy+, which
uses the information of already well-fit neighbouring spectra as
input guesses for flagged spectra, can even further improve upon
these results by creating more spatial coherence between the
spectra. Finally, Stage 3 of GaussPy+, which tries to enforce
spatial coherence between the centroid values of the fit compo-
nents, improves the decomposition results once more, by getting
rid of a fit component for the central spectrum that was inconsis-
tent with the neighbouring fit solutions.

In Table 2, we compare parameters and the percentage of
flagged spectra for the decomposition results for GaussPy and
the three stages of GaussPy+ depicted in Fig. 16. The WCO, all
and WCO, contour parameters give the fraction of recovered intensity
values integrated along the spectral axis for the whole test field
and inside the contour of 5 K km s−1, respectively. The WCO, all

and WCO, contour values were determined by comparing the moment
maps of the decompositions (panels a–d in Fig. 16) to the moment
masked zeroth moment map of panel b in Fig. 13. As already
noticeable in Fig. 16, the performance of GaussPy and GaussPy+
is better for spectra containing high S/N emission peaks than for
weaker emission lines. With GaussPy+ we are able to recover
about 90% of the WCO values contained in the entire test field
and ∼95% of the WCO values contained inside the contour of
5 K km s−1. Compared to the GaussPy+ runs, the decomposition
with the original GaussPy algorithm recovers about 12% less flux
inside the contour and 16% less flux in the entire field.

The total number of fitted Gaussian components Ncomp incre-
ases by about half for the GaussPy+ decompositions compared
to the GaussPy run. The median χ2

red values (χ2
red,med) of the

GaussPy+ fitting results are also lower by ∼22% than for the
GaussPy results.

A78, page 18 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=16

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

0.0

0.5

1.0

T B
 [K

]

Ncomp: 1
AICc: 378

0.5
0.0
0.5

Ncomp: 1
AICc: 428

Ncomp: 2
AICc: 416

0.0

0.5

1.0

T B
 [K

]

Ncomp: 1
AICc: 411

0.5
0.0
0.5

Ncomp: 2
AICc: 368

Ncomp: 2
AICc: 410

0.0

0.5

1.0

T B
 [K

]

Ncomp: 3
AICc: 461

0 25 50 75
Velocity [km s 1]

0.5
0.0
0.5

Ncomp: 2
AICc: 409

0 25 50 75
Velocity [km s 1]

Ncomp: 2
AICc: 457

0 25 50 75
Velocity [km s 1]

0.0

0.5

1.0

T B
 [K

]

Ncomp: 2
AICc: 406

0.5
0.0
0.5

Ncomp: 2
AICc: 457

Ncomp: 3
AICc: 494

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 503

0.5
0.0
0.5

Ncomp: 3
AICc: 396

Ncomp: 2
AICc: 410

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 482

0 25 50 75
Velocity [km s 1]

0.5
0.0
0.5

Ncomp: 3
AICc: 440

0 25 50 75
Velocity [km s 1]

Ncomp: 3
AICc: 468

0 25 50 75
Velocity [km s 1]

a) GaussPy b) GaussPy+ (Stage 1)

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 423

0.5
0.0
0.5

Ncomp: 4
AICc: 491

Ncomp: 3
AICc: 494

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 503

0.5
0.0
0.5

Ncomp: 5
AICc: 409

Ncomp: 4
AICc: 441

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 482

0 25 50 75
Velocity [km s 1]

0.5
0.0
0.5

Ncomp: 4
AICc: 467

0 25 50 75
Velocity [km s 1]

Ncomp: 4
AICc: 489

0 25 50 75
Velocity [km s 1]

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 423

0.5
0.0
0.5

Ncomp: 4
AICc: 491

Ncomp: 3
AICc: 494

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 503

0.5
0.0
0.5

Ncomp: 4
AICc: 416

Ncomp: 4
AICc: 441

0.0

0.5

1.0

T B
 [K

]

Ncomp: 4
AICc: 482

0 25 50 75
Velocity [km s 1]

0.5
0.0
0.5

Ncomp: 4
AICc: 467

0 25 50 75
Velocity [km s 1]

Ncomp: 4
AICc: 489

0 25 50 75
Velocity [km s 1]

c) GaussPy+ (Stage 2) d) GaussPy+ (Stage 3)

Fig. 17. Fitting results of nine neighbouring spectra in the GRS test field for the decomposition with GaussPy (a) and after Stage 1–3 of GaussPy+
(b–d, respectively). Individual fit components and their combination are shown in dashed and solid black lines, respectively. Horizontal dashed
black lines mark a S/N threshold of 3 and blue shaded areas indicate the identified signal intervals. The number of used fit components Ncomp and
the resulting AICc values are noted in the upper right corner of the main panel. The smaller subpanels show the residual with the horizontal dotted
black lines marking values of ±σrms.

Table 2 also shows the fraction of spectra of the GaussPy
and GaussPy+ results that would be flagged as not satisfy-
ing the quality criteria used in the first phase of the spatially
coherent refitting (Sect. 3.3.2). We use the default flagging cri-
teria of GaussPy+, which means that spectra get flagged if
they have blended components (Fblended), show negative residual
features (Fneg. res. peak), have broad components (FΘ, determined
with fΘ,max = 2), have residual data values whose distribution
does not correspond to what is expected from Gaussian noise

(Fresidual), or were fitted with a number of components that is
not consistent with the number of components used in the fit
solutions of neighbouring spectra (FNcomp). The fraction of spec-
tra that contain broad components in relation to neighbouring
components is indicated with FΘ. To better judge how many
components with very large absolute FWHM values occur in
the decompositions, we also list the fraction of spectra that con-
tain components with FWHM values above 50 spectral channels
(FΘ>50) that would imply very high velocity dispersion values

A78, page 19 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=17

A&A 628, A78 (2019)

Table 2. Comparison of parameters and flagged spectra for the decom-
position runs with GaussPy and GaussPy+.

GaussPy GaussPy+ GaussPy+ GaussPy+
(Stage 1) (Stage 2) (Stage 3)

WCO, all 73.0% 88.9% 89.6% 89.8%
WCO, contour 84.0% 95.5% 95.6% 95.7%
χ2

red,med 1.436 1.123 1.121 1.113
Ftot 59.2% 43.8% 35.5% 38.0%
Fblended 5.8% 7.5% 2.9% 3.2%
Fneg. res. peak 2.6% 0.1% 0.0% 0.1%
FΘ 24.0% 22.7% 19.1% 21.6%
FΘ>50 10.6% 11.2% 9.6% 9.4%
Fresidual 37.1% 20.0% 16.3% 16.5%
FNcomp 0.3% 1.5% 1.1% 1.0%

of &4.3 km s−1. The total flag value Ftot gives the percentage
of spectra that were flagged by at least one of the individual
flags. For the GaussPy decomposition about 59% of the spec-
tra were flagged as not satisfying at least one of the flagging
criteria, whereas this reduces to ∼35 and 38% for Stage 2 and
3 of GaussPy+, respectively. The fit results from Stage 2 of
GaussPy+ show the lowest fraction of flagged spectra, which
is expected given that this stage is designed for decreasing the
number of flagged spectra. Stage 3 of GaussPy+ aims to increase
the spatial coherence of the fit components, which is why the
percentage of flagged spectra increases slightly again compared
to the Stage 2 fitting results. All three stages of GaussPy+ per-
form well in removing negative residual features and reducing
fit results that lead to a residual whose distribution is inconsis-
tent with Gaussian noise. The percentage of spectra flagged with
Fblended, FΘ>50 and FNcomp flags actually increases for Stage 1 of
GaussPy+ compared to the results of GaussPy, which is likely
just an effect of the increased number of fit components used in
the GaussPy+ results. These flags are however reduced again in
the spatially coherent refitting stages.

Finally, Fig. 18 shows distributions of fit parameters for
the decomposition results of GaussPy and the three stages of
GaussPy+. The left panel shows histograms of the number of
fitted components per spectrum. As was already demonstrated
by panels m–p in Fig. 16, GaussPy+ manages to fit more spec-
tra than GaussPy, so that the total number of fitted components
increases by about one third for the GaussPy+ stages.

The middle panel of Fig. 18 shows histograms of the ampli-
tude values of all fit components. Comparing these distributions
with the histogram of the estimated noise values shown in the left
panel of Fig. 15 reveals that GaussPy+manages to fit many more
components whose S/N value is only ∼3 or lower. The median
S/N value of fit components decreases from 5.4 for the GaussPy
decomposition to 4.3 for the GaussPy+ fit results.

The histograms of the velocity dispersion values for all fit
components are given in the right panel of Fig. 15. The long tail
towards increased σvlos values is mostly due to fitted components
with low S/N values; about half of the fit components withσvlos >
4.3 km s−1 in the GaussPy+ decomposition results of Stages 2
and 3 have S/N values <2.

6. Discussion
In this section, we list potential applications as well as limita-
tions of GaussPy+. We also give advice on parameter settings to
obtain optimal decomposition results.

6.1. Applications and limitations of GaussPy+

The GaussPy+ algorithm should be applicable to any data set
that can be well described with Gaussian components; in partic-
ular it was designed to decompose large surveys of HI and CO
isotopologues. In case the line shape is better matched by a Voigt
or Lorentzian profile (e.g. due to effects of pressure broadening)
the decomposition with GaussPy+ will likely not give satisfac-
tory results. The algorithm can also not fit the hyperfine structure
of molecules such as NH3 or N2H+ directly.

Many of the individual routines implemented in GaussPy+,
such as the noise estimation (Sect. 3.1.1), signal identification
(Sect. 3.1.2), and masking of noise artefacts (Sect. 3.1.3) can
be used as stand-alone applications. For example, the noise esti-
mation can be used in combination with the signal identifica-
tion to detect baseline shifts, unsubtracted continuum emission,
or instrumental artefacts such as increased or amplified noise
fluctuations. Phase 1 of the spatially coherent refitting routine
(Sect. 3.3.1) can also be used to just flag decomposition results
without refitting them.

In its current version, GaussPy+ is not designed to deal with
spectra that contain both emission and absorption lines. If users
would like to use GaussPy+ for the decomposition of emission
lines that are expected to show strong self-absorption (such as
the lowest rotational transitions of the 12CO molecule), we rec-
ommend to deselect the flagging of negative residual spikes, as
in this case one would not want to fit a signal peak that has a dip
in its centre with two components.

The GaussPy+ algorithm will only perform well on spectra
whose baseline is centred on a value of zero. Incomplete con-
tinuum subtraction or baseline shifts of the spectrum will lead
to wrong noise estimates, which in turn will give insufficient
decomposition results, since core functionalities of GaussPy+
depend on the correctness of the estimated noise values.

The GaussPy+ algorithm can deal with large variations of
the noise (see Sect. 5). However, since key steps of the algorithm
are based on S/N thresholds, an inhomogeneous noise coverage
or variation in the quality of the data will have an impact on the
decomposition results.

In its current implementation GaussPy+ does not explicitly
check for spatial coherence of the amplitude and FWHM val-
ues. In principle, these values should also become more coherent
in the two phases of the spatially coherent refitting (Sect. 3.3),
where neighbouring fit solutions are used to improve the fit of
a spectrum. We focus on spatial coherence of the centroid posi-
tions, since it is a necessary requirement for correct amplitude
and FWHM values. If Gaussian fit components are not placed
correctly, their amplitude and FWHM values will by default
be spatially inconsistent with neighouring fit solutions. We also
have to caution against constraining the FWHM parameters of
Gaussian components with too restrictive limits based on fit
solutions from neighbours. In tests we performed, such a con-
straint could lead to Gaussian fit components with FWHM val-
ues close to the lower or upper limit of the constraint. This effect
caused artefacts in the distribution of all fitted FWHM values,
but in case of smaller data sets this might not be easily notice-
able. We thus do not enforce limits for the width of the Gaus-
sian fit components in any of the stages of GaussPy+, apart from
the requirement that the FWHM value has to be larger than the
user defined Θmin parameter, whose value defaults to the channel
width of the data set. This fitting without an upper limit and with-
out a more constrained lower limit could allow fluctuations in the
FWHM values between the Gaussian components of neighbour-
ing spectra.

A78, page 20 of 35

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

0 2 4 6
Ncomp

0

500

1000

1500

N
um

be
r o

f s
pe

ct
ra

0 1 2 3 4
TB [K]

0

50

100

150

200

250

300

N
um

be
r o

f c
om

po
ne

nt
s

0 2 4 6 8
vlos [km s 1]

0

100

200

300

400

500

N
um

be
r o

f c
om

po
ne

nt
s GaussPy

GaussPy+
(Stage 1)
GaussPy+
(Stage 2)
GaussPy+
(Stage 3)

Fig. 18. Distribution of fit parameters for the decomposition results of the GRS test field with GaussPy and the three stages of GaussPy+. Left:
Histogram of the number of fitted components per spectrum. Middle: Histogram of the amplitude values TB of all Gaussian fit components. The
bin size is 0.05 K. Right: Histogram of the velocity dispersion values σvlos of all Gaussian fit components. The bin size is 0.1 km s−1.

Our approach in phase 2 of the spatially coherent refitting
will also favor structures with ellipsoid morphologies over pos-
sible ring-like structures (see Fig. 11). Users thus should be
cautious in using the spatially coherent refitting for centroid
positions if the structures probed by the observations are not
expected to be continuous over multiple neighbouring pixels or
the data is not Nyquist sampled.

6.2. Recommended settings for GAUSSPY+

We tested the default settings of GaussPy+ on synthetic spec-
tra and line emission data from a 13CO survey and obtained
very good decomposition results with them. However, different
data sets may require significantly different settings. For exam-
ple, in HI observations we would expect two distinct populations
of narrow and very broad lineshapes corresponding to contribu-
tions from the cold and warm neutral medium respectively (e.g.
Heiles & Troland 2003), which is not the case for observations
of CO isotopologues. For the HI observations one would thus
not flag and refit broad Gaussian components, whereas this set-
ting can lead to better decomposition results for the CO data sets.
Ultimately, it is the responsibility of the user to consider if the
decomposition results of GaussPy+ are scientifically meaningful
for the chosen application.

In our application of GaussPy+ on the GRS data set we found
it beneficial for the fitting to also retain weak components with
amplitudes below a S/N threshold of 3. Since the decomposition
of GaussPy+ performs a least squares minimisation of the resid-
ual, the fit of higher peaks in a spectrum can be negatively affected
if weak components get discarded or neglected. We thus recom-
mend to also accept components with S/Nmin,fit < 3 in the decom-
position and only later on perform a cut based on their S/N values.

The GaussPy+ algorithm is designed to deal with spectra that
contain only weak emission lines with S/N values around 3 or
even lower. The quality check for the significance of a Gaussian
component is specifically designed to help in such cases where
GaussPy+ operates close to the noise. If the chosen settings for
GaussPy+ produce too many false positives, users are advised to
increase the chosen S/N limit and/or increase the value of the
Smin threshold. Conversely, in case the decomposition results
of GaussPy+ are not including a significant fraction of signal
peaks, users should try to decrease one or both of these param-
eter settings (see Appendix C.3 for how changing both of these
parameters affects the decomposition).

We designed GaussPy+ to be customisable to different data
sets, which means that most of its parameters can be changed

and finetuned by the user (see Table F.2). However, the majority
of parameters should yield good results for most data sets if left
to their default settings. To get first decomposition results only a
small number of parameters (listed as essential parameters) have
to be specified by the user. In case the decomposition does not
yield good results we recommend to first change the essential
parameters before changing the parameters listed under more
advanced settings in Table F.2.

7. Summary

In this work, we present the GaussPy+ algorithm, a new fully
automated Gaussian fitting package for the decomposition of
emission line spectra. The GaussPy+ algorithm is built upon
GaussPy (Lindner et al. 2015), but significantly extends and
improves upon its performance by the following added, fully
automated functionality:

1. Preparatory steps that can also be used as stand-alone
applications. This includes methods to accurately estimate the
noise (Sect. 3.1.1), identify signal peaks (Sect. 3.1.2), and
mask out noise artefacts (Sect. 3.1.3). An additional routine
(Sect. 3.1.4) creates suitable training sets for the in-built machine
learning process GaussPy uses to infer optimal parameter set-
tings for the decomposition of a data set.

2. Quality controls that are highly customisable to differ-
ent data sets (Sect. 3.2.1). This includes a criterion that takes
into account both the S/N values and the number of spec-
tral channels of a signal feature or fitted Gaussian component
and goodness of fit criteria to aid in the selection of the best
fit solution for a spectrum. Additional optional quality con-
trols (Sect. 3.2.2) allow the user to flag and refit unwanted
features in the decomposition such as blended Gaussian
components, negative peaks in the residual, very broad Gaus-
sian components, residual data points that are not normally
distributed, or differences in the number of fitted components
between neighbouring spectra.

3. An improved fitting routine (Sect. 3.2.3) that is guided by
the user-defined optional quality controls.

4. A spatially coherent refitting routine (Sect. 3.3) that tries
to refit spectra that do not pass the user-defined quality controls
or spectra whose decompositions shows spatial incoherence with
neighbouring fit solutions.

We thoroughly tested the performance of GaussPy+ on
synthetic spectra designed to cover a wide range of spectral fea-
tures expected in observations of emission lines of CO isotopo-
logues. We found that it yields very good decomposition results

A78, page 21 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=18

A&A 628, A78 (2019)

that significantly outperform the original GaussPy algorithm in
all tested cases (Sect. 4). We also applied GaussPy+ to a test
field from the GRS (Sect. 5) and showed that it can fit the data
well resulting in considerable improvements in the decomposi-
tion compared to the original GaussPy algorithm.

We conclude that the GaussPy+ algorithm is a powerful
tool to analyse large Galactic plane surveys, such as GRS or
SEDIGISM (Schuller et al. 2017). We will present and discuss
its application on the entire GRS data set in a forthcoming paper.

Acknowledgements. We would like to thank the anonymous referee for a
very constructive, detailed and clear report that helped to significantly improve
this work. This project received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No 639459
(PROMISE). J.H.O acknowledges funding from the Swedish Research Council
(registration number 2017-03864). C.E.M acknowledges support from a National
Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship under
Award No. AST-1801471. This publication makes use of molecular line data
from the Boston University-FCRAO Galactic Ring Survey (GRS). The GRS is
a joint project of Boston University and Five College Radio Astronomy Obser-
vatory, funded by the National Science Foundation under grants AST-9800334,
AST-0098562, & AST-0100793. Code bibliography: This research made use of
matplotlib (Hunter 2007), a suite of open-source python modules that provides
a framework for creating scientific plots; astropy, a community-developed core
Python package for Astronomy (Astropy Collaboration 2013); aplpy, an open-
source plotting package for Python (Robitaille & Bressert 2012); NumPy (Van
der Walt et al. 2011); and SciPy (Jones et al. 2001).

References
Akaike, H. 1973, in Proceedings of the 2nd International Symposium on

Information Theory, eds. B. N. Petrov, & F. Csaki, 267
Andrae, R., Schulze-Hartung, T., & Melchior, P. 2010, ArXiv e-prints

[arXiv:1012.3754]
Arzoumanian, D., André, P., Peretto, N., & Könyves, V. 2013, A&A, 553, A119
Arzoumanian, D., Shimajiri, Y., Inutsuka, S.-I., Inoue, T., & Tachihara, K. 2018,

PASJ, 70, 96
Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33
Banks, H. T., & Joyner, M. L. 2017, Appl. Math. Lett., 74, 33
Barnes, P. J., Muller, E., Indermuehle, B., et al. 2015, ApJ, 812, 6
Beuther, H., Bihr, S., Rugel, M., et al. 2016, A&A, 595, A32
Burkhart, B., Stanimirović, S., Lazarian, A., & Kowal, G. 2010, ApJ, 708, 1204
Burnham, K. P., & Anderson, D. R. 1998, Model Selection and Inference: A

Practical Information-Theoretic Approach (Springer-Verlag), 80
Chen, H. H.-H., Pineda, J. E., Goodman, A. A., et al. 2019, ApJ, 877, 93
Clarke, S. D., Whitworth, A. P., Spowage, R. L., et al. 2018, MNRAS, 479, 1722
Colombo, D., Rosolowsky, E., Duarte-Cabral, A., et al. 2019, MNRAS, 483,

4291
Dame, T. M. 2011, ArXiv e-prints [arXiv:1101.1499]
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
Dempsey, J. T., Thomas, H. S., & Currie, M. J. 2013, ApJS, 209, 8

Dénes, H., McClure-Griffiths, N. M., Dickey, J. M., Dawson, J. R., & Murray,
C. E. 2018, MNRAS, 479, 1465

D’Agostino, R. B. 1971, Biometrika, 58, 341
D’Agostino, R. B., & Pearson, E. S. 1973, Biometrika, 60, 613
Elmegreen, B. G., & Scalo, J. 2004, ARA&A, 42, 211
Ewen, H. I., & Purcell, E. M. 1951, Nature, 168, 356
Falgarone, E., Pety, J., & Hily-Blant, P. 2009, A&A, 507, 355
Ginsburg, A., & Mirocha, J. 2011, Astrophysics Source Code Library

[record ascl:1109.001]
Hacar, A., Tafalla, M., Kauffmann, J., & Kovács, A. 2013, A&A, 554, A55
Hacar, A., Alves, J., Burkert, A., & Goldsmith, P. 2016, A&A, 591, A104
Haud, U. 2000, A&A, 364, 83
Heiles, C., & Troland, T. H. 2003, ApJ, 586, 1067
Hennebelle, P., & Falgarone, E. 2012, A&ARv, 20, 55
Henshaw, J. D., Caselli, P., Fontani, F., Jiménez-Serra, I., & Tan, J. C. 2014,

MNRAS, 440, 2860
Henshaw, J. D., Longmore, S. N., Kruijssen, J. M. D., et al. 2016, MNRAS, 457,

2675
Henshaw, J. D., Ginsburg, A., Haworth, T. J., et al. 2019, MNRAS, 485, 2457
Heyer, M. H., & Brunt, C. M. 2004, ApJ, 615, L45
Hily-Blant, P., & Falgarone, E. 2009, A&A, 500, L29
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Hurvich, C. M., & Tsai, C. L. 1989, Biometrika, 76, 297
Jackson, J. M., Rathborne, J. M., Shah, R. Y., et al. 2006, ApJS, 163, 145
Jones, E., Oliphant, T., Peterson, P., et al. 2001, SciPy: Open Source Scientific

Tools for Python
Keto, E., Caselli, P., & Rawlings, J. 2015, MNRAS, 446, 3731
Kolmogorov, A. N. 1933, Giornale dell’Instituto Italiano degli Attuari, 4, 83
Larson, R. B. 1981, MNRAS, 194, 809
Lindner, R. R., Vera-Ciro, C., Murray, C. E., et al. 2015, AJ, 149, 138
Marchal, A., Miville-Deschenes, M.-A., Orieux, F., et al. 2019, A&A, 626,

A101
Miville-Deschênes, M.-A., Murray, N., & Lee, E. J. 2017, ApJ, 834, 57
Murray, C. E., Stanimirović, S., Goss, W. M., et al. 2015, ApJ, 804, 89
Murray, C. E., Stanimirović, S., Goss, W. M., et al. 2018, ApJS, 238, 14
Nakanishi, H., & Sofue, Y. 2006, PASJ, 58, 847
Orkisz, J. H., Pety, J., Gerin, M., et al. 2017, A&A, 599, A99
Orkisz, J. H., Peretto, N., Pety, J., et al. 2019, A&A, 624, A113
Ossenkopf, V., & Mac Low, M.-M. 2002, A&A, 390, 307
Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010, ApJ, 721, 686
Rathborne, J. M., Johnson, A. M., Jackson, J. M., Shah, R. Y., & Simon, R. 2009,

ApJS, 182, 131
Rigby, A. J., Moore, T. J. T., Plume, R., et al. 2016, MNRAS, 456, 2885
Robitaille, T., & Bressert, E. 2012, Astrophysics Source Code Library

[record ascl:1208.017]
Roman-Duval, J., Jackson, J. M., Heyer, M., Rathborne, J., & Simon, R. 2010,

ApJ, 723, 492
Schuller, F., Csengeri, T., Urquhart, J. S., et al. 2017, A&A, 601, A124
Smirnov, N. V. 1939, Bull. Moscow Univ., 2, 3 (Russian)
Stil, J. M., Taylor, A. R., Dickey, J. M., et al. 2006, AJ, 132, 1158
Su, Y., Yang, J., Zhang, S., et al. 2019, ApJS, 240, 9
Umemoto, T., Minamidani, T., Kuno, N., et al. 2017, PASJ, 69, 78
Van der Walt, S., Colbert, C., & Varoquaux, G. 2011, The NumPy Array: A

Structure for Efficient Numerical Computation (IEEE), 13, 22
Wilson, R. W., Jefferts, K. B., & Penzias, A. A. 1970, ApJ, 161, L43

A78, page 22 of 35

http://linker.aanda.org/10.1051/0004-6361/201935519/1
http://linker.aanda.org/10.1051/0004-6361/201935519/1
https://arxiv.org/abs/1012.3754
http://linker.aanda.org/10.1051/0004-6361/201935519/3
http://linker.aanda.org/10.1051/0004-6361/201935519/4
http://linker.aanda.org/10.1051/0004-6361/201935519/5
http://linker.aanda.org/10.1051/0004-6361/201935519/6
http://linker.aanda.org/10.1051/0004-6361/201935519/7
http://linker.aanda.org/10.1051/0004-6361/201935519/8
http://linker.aanda.org/10.1051/0004-6361/201935519/9
http://linker.aanda.org/10.1051/0004-6361/201935519/10
http://linker.aanda.org/10.1051/0004-6361/201935519/10
http://linker.aanda.org/10.1051/0004-6361/201935519/11
http://linker.aanda.org/10.1051/0004-6361/201935519/12
http://linker.aanda.org/10.1051/0004-6361/201935519/13
http://linker.aanda.org/10.1051/0004-6361/201935519/13
https://arxiv.org/abs/1101.1499
http://linker.aanda.org/10.1051/0004-6361/201935519/15
http://linker.aanda.org/10.1051/0004-6361/201935519/16
http://linker.aanda.org/10.1051/0004-6361/201935519/17
http://linker.aanda.org/10.1051/0004-6361/201935519/18
http://linker.aanda.org/10.1051/0004-6361/201935519/19
http://linker.aanda.org/10.1051/0004-6361/201935519/20
http://linker.aanda.org/10.1051/0004-6361/201935519/21
http://linker.aanda.org/10.1051/0004-6361/201935519/22
http://ascl.net/1109.001
http://linker.aanda.org/10.1051/0004-6361/201935519/24
http://linker.aanda.org/10.1051/0004-6361/201935519/25
http://linker.aanda.org/10.1051/0004-6361/201935519/26
http://linker.aanda.org/10.1051/0004-6361/201935519/27
http://linker.aanda.org/10.1051/0004-6361/201935519/28
http://linker.aanda.org/10.1051/0004-6361/201935519/29
http://linker.aanda.org/10.1051/0004-6361/201935519/30
http://linker.aanda.org/10.1051/0004-6361/201935519/30
http://linker.aanda.org/10.1051/0004-6361/201935519/31
http://linker.aanda.org/10.1051/0004-6361/201935519/32
http://linker.aanda.org/10.1051/0004-6361/201935519/33
http://linker.aanda.org/10.1051/0004-6361/201935519/34
http://linker.aanda.org/10.1051/0004-6361/201935519/35
http://linker.aanda.org/10.1051/0004-6361/201935519/36
http://linker.aanda.org/10.1051/0004-6361/201935519/37
http://linker.aanda.org/10.1051/0004-6361/201935519/37
http://linker.aanda.org/10.1051/0004-6361/201935519/38
http://linker.aanda.org/10.1051/0004-6361/201935519/39
http://linker.aanda.org/10.1051/0004-6361/201935519/40
http://linker.aanda.org/10.1051/0004-6361/201935519/41
http://linker.aanda.org/10.1051/0004-6361/201935519/42
http://linker.aanda.org/10.1051/0004-6361/201935519/42
http://linker.aanda.org/10.1051/0004-6361/201935519/43
http://linker.aanda.org/10.1051/0004-6361/201935519/44
http://linker.aanda.org/10.1051/0004-6361/201935519/45
http://linker.aanda.org/10.1051/0004-6361/201935519/46
http://linker.aanda.org/10.1051/0004-6361/201935519/47
http://linker.aanda.org/10.1051/0004-6361/201935519/48
http://linker.aanda.org/10.1051/0004-6361/201935519/49
http://linker.aanda.org/10.1051/0004-6361/201935519/50
http://linker.aanda.org/10.1051/0004-6361/201935519/51
http://linker.aanda.org/10.1051/0004-6361/201935519/52
http://ascl.net/1208.017
http://linker.aanda.org/10.1051/0004-6361/201935519/54
http://linker.aanda.org/10.1051/0004-6361/201935519/55
http://linker.aanda.org/10.1051/0004-6361/201935519/56
http://linker.aanda.org/10.1051/0004-6361/201935519/57
http://linker.aanda.org/10.1051/0004-6361/201935519/58
http://linker.aanda.org/10.1051/0004-6361/201935519/59
http://linker.aanda.org/10.1051/0004-6361/201935519/60
http://linker.aanda.org/10.1051/0004-6361/201935519/60
http://linker.aanda.org/10.1051/0004-6361/201935519/61

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

Appendix A: Markov chain

The basic principle or question behind this step is: given a cer-
tain peak in the spectrum, what is the probability that this peak
was caused by random fluctuations of the noise? This probabil-
ity depends on the size of the spectrum, as the probability that
random noise fluctuations cause a feature resembling a signal
peak will increase with the number of spectral channels. The
following probabilistic estimation does not attempt to quantify
the probability of a signal peak being a real feature, but tries to
establish the probability of a peak being the result of random
noise fluctuations.

To obtain this estimate, we first convert the spectrum into a
binary sequence by setting negative channels to a value of 0 and
positive channels to a value of 1 (we treat channels that have an
exact value of zero as positive channels). Assuming that each
channel can be treated independently from each other and is not
correlated with its neighbouring channels, this binary sequence
is analogous to a sequence of coin tosses, with the number of
coin tosses equivalent to the number of spectral channels.

This transformation thus allows us to work out the probabil-
ity of a sequence of negative or positive channels being due to
random noise fluctuations. In case of pure white noise, the prob-
ability of a spectral channel having a positive or negative value
is 1/2. To calculate the probability of a sequence of n negative or
positive spectral channels we use a one-step Markov chain with
state space of {1, 2, . . . , n}. The n × n transition matrix Pi, j that
we use to determine the probability of a sequence of n negative
or positive consecutive channels has the following structure:

Pi, j =

pi=1, j=1 pi=1, j=2 · · · pi=1, j=n
pi=2, j=1 pi=2, j=2 · · · pi=2, j=n

...
...

. . .
...

pi=n, j=1 pi=n, j=2 · · · pi=n, j=n

 . (A.1)

The rows i give the possible states the system can be in
(pre-transition states) and the column entries give the probabil-
ity of transitioning to respective new states. That means that all
of the elements in a row have to sum up to a probability of 1
(
∑n

j=1 pi, j = 1).
The individual entries pi, j of the transition matrix have the

following values:

pi, j =

1/2, for i = 1, 2, . . . , n − 1 and j = i + 1
1/2, for i = 1, 2, . . . , n − 1 and j = 1
1, for i = n and j = n
0, otherwise.

(A.2)

This allows us to determine the probability of finding a
sequence of n consecutive negative or positive channels in a
spectrum with N channels. We start in state 1 (the first spec-
tral channel has either a positive or a negative value) and need to
determine the probability of being in state n (corresponding to a
sequence of n spectral channels with either positive or negative
values) after N − 1 Markov chain steps. This probability is given
by the p1,n entry of the one-step transition matrix of the form
n × n raised to the power of N − 1. We can thus compute the
probability for any sequence of n consecutive positive or neg-
ative channels in a spectrum with Nchan spectral channels with
random values.

Let us illustrate this with the example of a Markov chain
for 4 consecutive negative or positive channels. In this case the
Markov chain has a state space of {1, 2, 3, 4} and the transition

0.291 0.158 0.086 0.465

0.244 0.133 0.072 0.551

0.158 0.086 0.047 0.709

0 0 0 1

N = 4 N = 10

0.5 0.25 0.125 0.125

0.375 0.25 0.125 0.25

0.25 0.125 0.125 0.5

0 0 0 1

Fig. A.1. One-step Markov chain results for 4 consecutive negative or
positive spectral channels in a sequence of 4 (left) or 10 (right) channels
with random values. The value highlighted in blue gives the probability
that 4 consecutive channels in the respective sequence are either positive
or negative.

matrix has the following form:

Pi, j =

1/2 1/2 0 0
1/2 0 1/2 0
1/2 0 0 1/2
0 0 0 1

 . (A.3)

In state 1 (which corresponds to row i = 1 of the transition
matrix) we have a sequence of one positive or negative channel
and we will always start with this state or revert to this state if the
sign between neighbouring channels changes before we reached
the full sequence of four consecutive channels. In state 2 (row
i = 2) and state 3 (row i = 3) we have a sequence of two and
three positive or negative channels, respectively. State 4 (row
i = 4) is the absorbing final state, where we reached four con-
secutive positive or negative channels. The individual column
entries of each row then give the probabilities of moving to a new
state. In our example, the transition matrix element p1,2 gives the
probability of moving from state 1 to state 2 (p1,2 = 1/2), and
the element p4,3 gives the probability of moving from state 4 to
state 3 (p4,3 = 0).

In our example we always start out with a spectral channel
that has either a positive or negative value, so state 1 is just a
sequence of 1 positive or negative channel. For state 1, there is
a probability of 1/2 that the system stays in state 1 (if the value
of the next channel changes sign) or that it moves to state 2 (row
i = 2), in which we have two consecutive channels with the same
sign. For state 2 and state 3, there is again a probability of 1/2
that the channel value changes sign and the system moves back
to state 1, and a probability of 1/2 that it moves to state 3 or the
absorbing state 4, respectively.

Figure A.1 shows Markov chain results for 4 consecutive
positive or negative channels in a sequence of 4 or 10 channels
with random values (left and right panel, respectively). These
matrices were obtained by raising the one-step transition matrix
given in Fig. A.3 to the power of 3 and 9, respectively. The last
element in the first row of the matrices (highlighted in blue) gives
the respective probabilities to get 4 consecutive positive or neg-
ative channels in random sequences of 4 or 10 channels.

Given the random fluctuations of the noise, it becomes clear
that the more spectral channels there are, the higher the proba-
bility of getting a sequence of n channels with positive or neg-
ative value. For example, the probability of having a sequence
of ten consecutive positive or negative channels in a spectrum of
100 channels is 0.088. If the number of spectral channels doubles
to 200, the probability of getting a sequence of ten consecutive
positive or negative channels increases to 0.173.

A78, page 23 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=19

A&A 628, A78 (2019)

The noise estimation routine of GaussPy+ uses a user-
defined probability threshold PLimit (default value: 2%) to decide
which features get masked out for the noise calculation in a spec-
trum with Nchan channels. We use an iterative approach to calcu-
late the minimum necessary number of consecutive positive or
negative spectral channels n for which p1,n < PLimit. We start
by constructing a transition matrix for n = 2 and determine the
p1,n value of PNchan−1. If p1,n > PLimit we increase n by one and
repeat the calculation. We stop these iterations once p1,n < PLimit
and the final value of n determines the minimum number of con-
secutive positive or negative channels a feature has to have to get
masked out. For example, for a spectrum with 700 spectral chan-
nels, features with more than 15 consecutive positive or negative
spectral channels have a probability of less than 2% to be caused
by random noise fluctuations and will be thus masked out in the
noise calculation routine.

Appendix B: Testing GaussPy+ on synthetic
spectra

B.1. Sample of synthetic spectra

We created four different samples of 10 000 synthetic spectra
each, to mimic expected properties of spectra (see Fig. B.1 for
examples of each sample):
A: White noise only.
B: White noise and signal. For spectra in this sample up to

12 Gaussian components (“signal”) were added to the white
noise of the spectra from sample A.

C: White noise, signal, and negative noise spikes. For spectra
in this sample one or two negative Gaussian components
(“noise spikes”) were added to the spectra from sample B
to mimic instrumental artefacts.

D: White noise, weak signal, and negative noise spikes. For
spectra in this sample the positive Gaussian components
from sample C had their amplitudes reduced. The signal
peaks can thus be hidden in the noise, which makes the
decomposition very challenging.

The synthetic spectra were set up to closely mimic spectra from
the GRS data set with regards to the number of spectral channels
(659), and expected noise and signal properties. The σrms value
used to generate the white noise was randomly sampled from a
Gamma distribution of the form

p (x) = xk−1 e−x/θ

θkΓ (k)
, (B.1)

with k = 2, and θ = 0.35. To closely mimic the noise distribution
of the GRS survey (cf. Fig. 8 from Jackson et al. 2006) we shifted
the distribution by a value of 0.06 and scaled it by a factor of 0.1
(panel a in Fig. B.2). The minimum σrms value of our sample is
0.06 K and we limited the maximum σrms value to 0.4 K.

The parameters of the Gaussian components of the signal
were randomly sampled from distributions set up to resem-
ble the signal peaks observed in the GRS data set. We sam-
pled the FWHM values from a standard normal distribution
scaled by a factor of ∼13 (panel b in Fig. B.2). We limited the
FWHM to a maximum value of 50 spectral channels. We sam-
pled the amplitude values from another standard normal distri-
bution scaled by a factor of 0.4 (panel c in Fig. B.2). We limited
the amplitude range to values of [3.5 × σrms, 2.5]. We sampled
the mean values of the Gaussians from a uniform distribution
over all 659 spectral channels. For each spectrum, we required
for every Gaussian signal component i that: its significance value

0.5

0.0

0.5

1.0

In
te

ns
ity

A

0.5

0.0

0.5

1.0

In
te

ns
ity

B

0.5

0.0

0.5

1.0

In
te

ns
ity

C

0 100 200 300 400 500 600
Channel

0.5

0.0

0.5

1.0

In
te

ns
ity

D

Fig. B.1. Example spectra from the four samples of synthetic spectra (A–
D) used to test the performance of GaussPy+. Black dotted lines indicate
individual Gaussian components of the signal and negative noise spikes.
The horizontal dashed black lines show a S/N threshold of 3. Shaded
areas indicate intervals that GaussPy+ classified as signal intervals (blue)
and noise spikes (red). The noise is the same in all four panels.

0.0 0.2 0.4
rms

0.0

2.5

5.0

7.5

10.0

P
ro

ba
bi

lit
y

de
ns

ity a)

0 20 40
FWHM

0.00

0.02

0.04

0.06 b)

0 1
amplitude

0.0

0.5

1.0

1.5

2.0 c)

Fig. B.2. Probability distribution functions for σrms (left), FWHM
(middle), and amplitude values (right). For the synthetic spectra, these
distributions were randomly sampled to obtain the noise and Gaussian
components of the signal.

S (Sect. 3.2.1) had to be >6; its mean position µi had to be
at a minimum distance of Θ j to the mean position µ j of the
closest Gaussian signal component j, where Θ j is the FWHM
of the Gaussian component j; its FWHM value Θi had to be
<20 channels if its amplitude value ai was >1. The last condition
was implemented to exclude components with both high ampli-
tude values and broad linewidths. This exclusion of the strongest

A78, page 24 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=20
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=21

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

0

5

10

15

P
ro

ba
bi

lit
y

de
ns

ity

Sample A Sample B

-10% 0% 10% 20%
relative error for rms

0

5

10

15

P
ro

ba
bi

lit
y

de
ns

ity

Sample C

-10% 0% 10% 20%
relative error for rms

Sample D

Fig. B.3. Probability density distributions showing the results of our
automated noise estimation for the sample of synthetic spectra contain-
ing: only white noise (upper left panel); white noise and signal (upper
right panel); white noise, signal, and negative noise spikes (lower left
panel); white noise, weak signal, and negative noise spikes (lower right
panel). The abscissa shows the determined root-mean-square noise
value σrms normalised by the true root-mean-square noise value σrms, true
that was used to generate the white noise. Hatched areas and vertical
dotted lines show the respective interquartile ranges and median value
of the respective distributions. The black solid line shows the distribu-
tion obtained by using all spectral channels from sample A for the noise
calculation. See Appendix B.2 for more details.

components was only done to create a more challenging setup
for the decomposition. Data sets with low to moderate spatial
resolution such as GRS are likely to contain such strong fea-
tures that can be caused by the broadening of lines due to the
large spatial beamsize and large distances to the emitting physi-
cal objects. However, these strong emission lines are fitted well
with GaussPy and GaussPy+ in case no strong blending with
other lines is present, as is the case for our samples of synthetic
spectra.

The parameters for the negative Gaussian components of the
noise spikes were randomly sampled in mean position, ampli-
tude, and FWHM from uniform distributions within the limits
[0, 659], [−4 × σrms,−1.5], and [1, 20], respectively. We required
that the noise spikes were placed at least a distance of Θ j from
the closest Gaussian signal component j. The amplitude values
of the Gaussian components for sample D were sampled from a
uniform distribution with the range [2.5 × σrms, 3.5 × σrms].

B.2. Performance of the automated noise estimation routine

Here we report the results of the automated noise estima-
tion of GaussPy+ (Sect. 3.1.1) on the synthetic spectra from
samples A–D discussed in the last section. We used the default
settings for the noise estimation routine (PLimit = 2%, Npad = 5),
which means that sequences above 15 consecutively positive or
negative spectral channels get masked out for the noise estima-
tion in addition to peaks that show high amplitude values.

Figure B.3 shows probability density distributions of the rel-
ative errors of the σrms values determined by GaussPy+. These
relative errors were obtained by comparing the estimated σrms
values to the true noise values (σrms, true) used to generate the
white noise for all four samples (A–D). For comparison, we
also show the probability distribution obtained if all channels in
the spectra of sample A are used for the calculation of the σrms

0% 10% 20% 30% 40% 50%
Missed channels with true signal

0%

20%

40%

60%

80%

100%

S
yn

th
et

ic
 s

pe
ct

ra

0% 20% 40% 60% 80% 100%
Noise channels in signal intervals

B (Npad = 5, Nmin = 100)
C (Npad = 5, Nmin = 100)
D (Npad = 5, Nmin = 100)
B (Npad = 0, Nmin = 0)
C (Npad = 0, Nmin = 0)
D (Npad = 0, Nmin = 0)

Fig. B.4. Results of the signal interval identification of GaussPy+ for
our samples of synthetic spectra. Left: Cumulative percentage of the
synthetic spectra showing the fraction of unidentified spectral channels
containing true signal. Right: Cumulative percentage of the synthetic
spectra showing the fraction of identified signal interval channels cor-
responding to noise. See Appendix B.3 for more details.

value (solid black line). This distribution corresponds to the best
we could do for the calculation of the σrms value and its spread
around the σrms, true value reflects inherent random effects of the
noise that would be decreased if the number of spectral channels
were increased.

For the majority of the synthetic spectra the noise estimation
performed very well with the median of the distribution (dot-
ted vertical line) being very close to the σrms, true value and the
interquartile ranges (hatched areas) within relative errors of ±3%
and ±4% for samples A–C and sample D, respectively. Since the
noise estimation always excludes the spectral channels with the
highest negative and positive values (see Sect. 3.1.1), it tends to
slightly underestimate the σrms value for spectra containing only
noise (sample A). For sample B (white noise and signal), nearly
all estimated σrms values are within ±10% of σrms, true. For the
spectra of sample C the performance of the noise calculation is
almost as good, which demonstrates that our method is robust
to the presence of negative noise spikes or similar instrumental
artefacts. As expected, for sample D (white noise, weak signal,
noise spikes) we tend to overestimate the σrms values. However,
given that a fraction of the signal peaks in these spectra is buried
within the noise, the noise calculation still performs very well,
with σrms values within ±10% of σrms, true for about 93% of the
spectra.

B.3. Performance of the identification of signal intervals

In this section we report on the results of the automated identifi-
cation of signal intervals of GaussPy+ (Sect. 3.1.2) on our sam-
ples of synthetic spectra (Appendix B.1). We used the default
settings of GaussPy+, with S/Nmin = 3, Smin = 5, Nmin = 100,
and Npad = 5.

For sample A, whose spectra contain no signal, the signal
identification had a false positive rate of 0.01%. That means out
of a sample of 10 000 spectra with white noise there was only a
single spectrum for which a signal interval was incorrectly iden-
tified.

The left panel in Fig. B.4 shows the cumulative percentage of
the synthetic spectra as a function of unidentified spectral chan-
nels that contain true signal. We define the interval of channels
containing true signal as all channels within µi ± Θi for a true
Gaussian signal component i. For ∼90% of the spectra in sam-
ple B and C, the fraction of unidentified spectral channels con-
taining signal is <10%. In case of weak signal (sample D), the

A78, page 25 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=22
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=23

A&A 628, A78 (2019)

percentage of unidentified spectral channels with signal is still
<20% for ∼90% of the spectra. This performance is very good,
given that many of the signal peaks in sample D are by con-
struction nearly indistinguishable from noise features (with their
amplitude values ranging from only 2.5×σrms to 3.5×σrms). The
dashed lines indicate runs of the signal interval identification, for
which we set the Npad and Nmin keywords to zero, meaning that
there are no channels added on either side of the identified signal
intervals. The left panel in Fig. B.4 demonstrates that we would
miss a larger fraction of spectral channels containing true signal
by setting Npad and Nmin to zero.

The right panel in Fig. B.4 shows the cumulative percent-
age of the synthetic spectra as a function of the fraction of noise
channels included in the identified signal intervals, again for the
two runs in which we vary the Npad and Nmin values as for the
left panel. If Npad and Nmin are set to zero, only a very small frac-
tion of noise channels is included in the estimated signal inter-
vals. As expected, this fraction increases if we extend the signal
intervals on both sides by Npad = 5 and require that the signal
intervals contain a minimum number of channels per spectrum
of Nmin = 100. However, this has no negative impact on the
decomposition, since the signal intervals are only used in the
goodness of fit calculations. It would be more problematic if we
set Npad and Nmin to zero, because in that case we would miss a
higher fraction of real signal, which would not be considered in
the goodness of fit estimates.

We thus conclude that our method to estimate signal inter-
vals works well. This good performance of the signal interval
determination is also illustrated in Figs. 17, B.1 and B.7, where
the estimated signal intervals are indicated with the blue shaded
areas.

B.4. Performance of the masking of noise artefacts

In this section we report on the performance of GaussPy+ in
automatically masking negative noise spikes (Sect. 3.1.3) for
our samples of synthetic spectra (Appendix B.1). We used the
default settings for the S/Nspike parameter that masks out all
spectral features that contain negative values below −5 × σrms.

Our routine managed to correctly identify 99.4% and 98.8%
of all noise spikes with minimum values <−5 × σrms, true in the
synthetic spectra of samples C and D, respectively. The small
fraction of unidentified noise spikes with S/N < −5 × σrms, true
was due to overestimates of the σrms values. The fraction of false
positives – that means noise fluctuations that were incorrectly
identified as noise spikes – was 0.02% for both samples. The
performance of the masking of noise artefacts is also illustrated
in Figs. B.1 and B.7, where the shaded red areas indicate the
spectral channels identified as noise spikes.

B.5. Performance of the automated decomposition routine
for the training set

As discussed in Sect. 3.1.4, GaussPy+ can supply a training set
for the determination of the best smoothing parameters for a
data set. Here we discuss the performance results of the auto-
mated decomposition of spectra for the training set. We quantify
the performance by comparing the resulting smoothing parame-
ters α1 and α2 obtained from the decomposed training set with
the smoothing parameters obtained for the same training set if
the true known Gaussian parameters are supplied. For the train-
ing sets, we randomly selected 250 synthetic spectra from sam-
ples B–D (Appendix B.1). We then created two training sets for
each sample by: (i) decomposing the spectra via the method dis-

Table B.1. Comparison of obtained smoothing parameter values α1 and
α2 and the corresponding F1 score for different training sets.

Sample α1 α2 F1 score [%]

B 2.08 4.91 82.4
B (true) 2.03 4.91 82.7

C 2.11 4.89 79.0
C (true) 2.07 4.87 79.6

D 3.23 4.98 69.0
D (true) 3.44 5.09 71.5

cussed in Sect. 3.1.4; (ii) supplying the true parameters for the
Gaussian components of the synthetic spectra.

Table B.1 lists the result of the gradient descent technique
applied by GaussPy to determine the best smoothing parame-
ters for the training sets. The run in which the true values of the
Gaussian components were supplied in the training set is indi-
cated with “(true)”. For all runs the S/N for the spectrum and its
second derivative were set to SNR1 = SNR2 = 3.

For sample B and C the runs for both training sets converge
to essentially the same smoothing parameters α1 and α2. For
sample D, the value for α1 inferred from the training set decom-
posed with our routine is slightly smaller than the parameter
we get from the true values. We tested the effect of this change
by repeating the GaussPy decomposition for sample D with the
smoothing parameter values α1 = 3.44 and α2 = 5.09. We then
recomputed the percentage of correct identifications (30.4%) and
false positives (6.9%) in the same way as for the values inferred
from the decomposed training set given in Table 1 (29.4%
and 6.5% for the correct identifications and false positives,
respectively). This shows that the slight difference in the smooth-
ing parameter inferred for sample D has only a limited impact on
the GaussPy decomposition results.

The comparison in Table B.1 thus demonstrates that the auto-
mated method for creating training sets that is implemented in
GaussPy+ works well. We thus conclude that smoothing param-
eters close to the optimal value can be obtained via this method.

B.6. Performance of the Gaussian decomposition

Here we compare the performance of the decomposition of the
original GaussPy algorithm and the improved fitting routine
of GaussPy+ (Sect. 3.2.3) on our samples of synthetic spectra
(Appendix B.1). First, we explore how the performance of the
decomposition results of GaussPy and GaussPy+ for sample B–
D of the synthetic spectra varies with the number of components
in the spectrum, the S/N, the width of the signal peaks, and the
separation between signal peaks. We counted the mean position
of fitted Gaussian components as correct if their values were
within ±2 channels of the peak positions of the true underly-
ing signal peak. We counted amplitude and FWHM parameters
as correctly fit if their values were within ±20% of the true value
in addition to the requirement that the fitted mean position is
within ±2 channels of the true position of the component. Since
for narrow signal peaks 20% of the FWHM can amount to only a
fraction of a channel we additionally count a FWHM parameter
as correctly fit if its absolute error is within ±2 spectral channels
of the correct FWHM value.

The left panels in Fig. B.5 show the percentage of correctly
identified Gaussian fit parameters (mean position, amplitude and
FWHM value from top to bottom, respectively) as a function
of the number of components in the spectrum. The GaussPy+

A78, page 26 of 35

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

0%

20%

40%

60%

80%

100%

 (c
or

re
ct

ly
 fi

t)

0%

20%

40%

60%

80%

100%

a
(c

or
re

ct
ly

 fi
t)

B (GaussPy+)
C (GaussPy+)
D (GaussPy+)
B (GaussPy)
C (GaussPy)
D (GaussPy)

1 3 5 7 9 11
Ncomp

0%

20%

40%

60%

80%

100%

 (c
or

re
ct

ly
 fi

t)

2.5 4.0 5.5 7.0 8.5
S/N

10 20 30 40
FWHM

3 4 5 6
Peak separation [i]

Fig. B.5. Performance of the GaussPy and GaussPy+ decomposition runs for samples of synthetic spectra. The ordinate in the upper, middle, and
lower panels show the fraction of correctly fit Gaussian mean positions, amplitude values, and FWHM values, respectively, plotted against the
number of true Gaussian components, the S/N, the true FWHM values, and the peak separation in the left, centre left, centre right, and right panels,
respectively. See Appendix B.6 for more details.

decomposition shows a very stable performance that is not much
affected by a higher number of components or the existence of
noise spikes. Even in the case of signal peaks very close to the
detection threshold (sample D) it still yields a good performance.
In contrast, the ability of the original GaussPy algorithm to cor-
rectly decompose the components deteriorates by about 10−20%
for the synthetic spectra of sample B and C, and up to 30% for
sample D the more complex the spectra are.

The centre left panels in Fig. B.5 show the number of
correctly determined Gaussian fit parameters as a function of
the S/N. As expected, the performance results strongly depend
on the S/N. However, compared to the results of the original
GaussPy algorithm, the GaussPy+ decomposition gives a sig-
nificantly better performance, especially in determining correct
fit parameters for signal peaks with S/N values ≤3, which can be
heavily affected by the noise.

The centre right panels in Fig. B.5 show the number of
correctly determined Gaussian fit parameters as a function of
the FWHM values of the true signal peaks. In contrast to the
GaussPy fit results, the performance of the GaussPy+ decompo-
sition does not deteriorate with increasing width of the signal
peaks, which means that both narrow and broad components
are well fitted. The decomposition with the original GaussPy
algorithm shows a much stronger dependence on the line

0% 10% 20% 30% 40%
Incorrectly fitted channels

0%

20%

40%

60%

80%

100%

D
ec

om
po

se
d

sy
nt

he
tic

 s
pe

ct
ra

B (GaussPy+)
C (GaussPy+)
D (GaussPy+)
B (GaussPy)
C (GaussPy)
D (GaussPy)

0% 20% 40% 60% 80% 100%
Missed channels with true signal

Fig. B.6. Comparison of the decomposition results obtained with
GaussPy and GaussPy+ for our samples of synthetic spectra. Left:
Cumulative percentage of decomposed spectra showing the fraction of
spectral channels that were incorrectly fit. Right: Cumulative percentage
of decomposed spectra showing the fraction of spectral channels con-
taining true signal that were not fit. See Appendix B.6 for more details.

width, and has difficulties in correctly decomposing broader
components.

Finally, the right panels in Fig. B.5 show the percentage of
correctly determined Gaussian fit parameters of signal compo-
nent i as a function of peak separation to its closest neighbouring

A78, page 27 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=24
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=25

A&A 628, A78 (2019)

0.0

0.5

1.0

In
te

ns
ity

a)

0.5

0.0

0.5

0.0

0.5

1.0
b)

0.5

0.0

0.5

0.0

0.5

1.0

In
te

ns
ity

c)

0.5

0.0

0.5

0.0

0.5

1.0d)

0.5

0.0

0.5

0.25

0.00

0.25

0.50

0.75

In
te

ns
ity

e)

0 100 200 300 400 500 600
Channels

0.0

0.5
0.25

0.00

0.25

0.50

0.75f)

0 100 200 300 400 500 600
Channels

0.0

0.5

Fig. B.7. Example spectra illustrating the better performance of the improved fitting routine of GaussPy+ (Sect. 3.2.3) compared to the original
GaussPy algorithm. Upper (a, b), middle (c, d), and lower (e, f) panels: synthetic spectra from samples B, C, and D, respectively. The panels on the
left (a, c, e) show the decomposition results obtained with the original GaussPy algorithm and panels on the right (b, d, f) show the corresponding
decomposition results from the improved fitting routine of GaussPy+. The correct individual Gaussian components are indicated in dashed black
lines; individual Gaussian components and their combined intensity from the decomposition run with GaussPy and GaussPy+ are indicated in solid
red and blue lines, respectively. The smaller panels below the spectrum show the corresponding residual with the dotted black lines indicating
values of ±σrms. Dashed black lines indicate a S/N of 3. Blue and red shaded areas show the automatically identified signal and noise spike
intervals, respectively.

signal components j. This peak separation is given as multi-
ples of the standard deviation σi of component i. As expected,
the performance of the decomposition with GaussPy+ decreases
the closer two components are placed to each other as it gets
exceedingly more difficult to correctly deblend them. Nonethe-
less, the decomposition with GaussPy+ manages to fit about
∼60% of even the most heavily blended components in sample B
and C correctly, which exceeds the performance of GaussPy
by more than 20%. For the challenging weak signal peaks of
sample D, the fraction of correctly decomposed components
that were blended the most was lower (∼20–30%). However,
the percentage of correct fits increases already significantly for
moderate peak separations of ∼3–4 × σi and reaches a stable
high performance for even larger peak separations. We test the
performance of GaussPy+ for blended components in more
detail in Appendix B.7.

We also note that the GaussPy decomposition results deteri-
orate in case of the presence of negative noise spikes. However,
the performance of GaussPy+ is unaffected by these negative
noise spikes, as can be seen by the almost overlapping blue and
red solid lines in all panels shown in Fig. B.5.

We tried to choose fair criteria for the definition of when
we count components in Fig. B.5 as correctly fit. Given that
many of our signal peaks show only low to moderate S/N values,
noise properties might already severely affect their lineshapes,
so stricter criteria would not accept decomposition results that
a human would likely classify as correctly fit. Conversely, more
relaxed criteria could allow too large absolute deviations from
the correct parameter values. However, we repeated the analysis
of Fig. B.5 for both stricter and more relaxed criteria and we do
recover the same general trends: performance results that exceed
the decomposition of GaussPy and are almost unaffected by the
number of components in the spectrum, the FWHM value or the
presence of noise spikes, and increase with higher S/N values or
larger peak separations.

Next, we compare the number of fitted spectral channels
with the channels containing true signal for the GaussPy and
GaussPy+ decompositions. We define the interval of fitted
channels or channels containing true signal as all channels within
µi ± Θi for a fitted or true Gaussian component i. The left panel
in Fig. B.6 shows the cumulative percentage of decomposed
synthetic spectra as a function of the percentage of incorrectly

A78, page 28 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=26

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

fitted spectral channels. Both GaussPy and GaussPy+ show a
very good performance with a low fraction of false positives.
The improved results of GaussPy+ are due to its ability to more
correctly identify individual signal peaks where GaussPy fits a
single component over multiple peaks.

The right panel in Fig. B.6 shows the cumulative percentage
of decomposed synthetic spectra as a function of spectral chan-
nels containing true signal that were not fit by Gaussian com-
ponents. For all three samples of synthetic spectra GaussPy+
significantly improves the decomposition results of GaussPy by
fitting more components at their correct positions. The improve-
ment is especially striking in case of the spectra from sample D
that contain only weak signal.

Figure B.6 thus illustrates that GaussPy+ manages to fit sig-
nificantly more channels containing true signal than GaussPy.
Moreover, GaussPy+ does not fit too many noise features.

The improved performance of GaussPy+ is further illus-
trated in Fig. B.7, which contrasts decompositions of the original
GaussPy algorithm (left panels) with decompositions obtained
with our improved fitting routine (right panels) for synthetic
spectra from samples B–D. Figure B.7 shows that the orig-
inal GaussPy algorithm sometimes has problems in decom-
posing mildly blended signal peaks and signal peaks at the
edge of the spectrum, whereas GaussPy+ has no problems in
fitting those components correctly. The GaussPy+ algorithm
also does a good job of identifying signal peaks and noise
artefacts.

B.7. Recovery of identical components with different S/N and
degrees of blendedness

Here we quantify how well the improved fitting algorithm of
GaussPy+ (Sect. 3.2.3) is able to recover blended components.
For this, we create a sample of synthetic spectra that contain
two identical Gaussian signal peaks. We vary the parameters of
the signal peaks between the following values: [3, 3.5, . . . , 7] for
the S/N; [5, 10, . . . , 30] spectral channels for the FWHM; and
[1, 1.2, . . . , 5]×σi for the separation of the mean positions of the
signal peaks. We created ten spectra of each possible parame-
ter combination for a total of 11 340 spectra and added different
noise sampled from a σrms value of 0.13 to each spectrum17.

We constructed a training set by randomly selecting
500 spectra of different parameter combinations and inferred
smoothing parameters α1 and α2 by supplying the true values
of the signal peaks. Since our aim here is to establish the per-
formance of our decomposition given ideal settings, we sup-
plied the true paramater values as solutions instead of decom-
posing the training set with the method described in Sect. 3.1.4.
From this training set we inferred smoothing parameters values
of α1 = 2.16 and α2 = 6.19 that led to an F1 score of 76.8%. We
then performed decompositions with the original GaussPy algo-
rithm and the improved fitting routine of GaussPy+, leaving all
the settings at their default values.

Figure B.8 shows the performance results of the two decom-
position runs. The left panel shows the percentage of fits using
two Gaussian components as a function of peak separation, split
into a sample with low to moderate S/N (<5, dashed lines) and
high S/N (≥5, solid lines). The vertical dotted line indicates the
separation threshold for two identical Gaussian components in
case of no noise (see also Sect. 3.2.2). For low to moderate S/N

17 The number of spectral channels (659) and the σrms value were again
chosen to closely mimic properties of the GRS data set.

1 2 3 4
Peak separation [i]

0%

20%

40%

60%

80%

100%

Fi
t w

ith
 tw

o
G

au
ss

ia
n

co
m

po
ne

nt
s

3 4 5 6 7
S/N

Fig. B.8. Decomposition results of a sample of synthetic spectra with
two identical Gaussian components, whose S/N, peak separation and
FWHM parameter were varied. Blue and black lines indicate the results
obtained for the decomposition runs with GaussPy+ and GaussPy,
respectively. Left: Percentage of fitted spectra with two Gaussian com-
ponents as a function of peak separation for S/N < 5 (dashed lines)
and ≥5 (solid lines). The dotted vertical line indicates the separation
threshold for two identical Gaussian components without noise. Right:
Percentage of fitted spectra with two Gaussian components as a function
of their S/N for peak separations of <3 × σi (dashed lines) and ≥3 × σi
(solid lines).

it becomes very difficult to differentiate two similar Gaussian
components if their peak positions are separated by less than
about 3.5 times their standard deviation. For higher S/N iden-
tical signal peaks can be located closer together until they essen-
tially become indistinguishable from a single component. For the
decomposition with GaussPy+, the signal peaks need to have a
distance to each other of more than ∼2.5 × σi until the majority
of signal peaks will be fit with two components. The GaussPy+
algorithm by design fits preferentially a single instead of two
components if the peaks are only separated closely, as in such
cases a fit with a single Gaussian component will already be a
good match to the combined signal peaks and the simplest fit
solution is preferred without additional information (e.g. from
neighbouring fit solutions) to inform the fit. For larger peak sep-
arations GaussPy+ exceeds the performance of GaussPy, espe-
cially in the case of low to moderate S/N values.

The right panel of Fig. B.8 shows the percentage of decom-
position results using two Gaussian fit components, split into
two samples with small (<3 × σi, dashed lines) and large (≥3 ×
σi, solid lines) peak separations. For small peak separations,
GaussPy and GaussPy+ will preferentially fit the signal peaks
with a single component, even if the S/N is high. For larger peak
separations the two-component fit solution is dominant and the
percentage of spectra fit with two components increases signifi-
cantly for high S/N.

Since the decomposition was performed without any addi-
tional knowledge about the signal peaks (as could be imposed
by neighbouring spectra in spatially coherent decompositions),
it can become very challenging to correctly fit signal peaks with
low S/N, as random fluctuations of the noise can significantly
change their shape. Moreover, the two identical signal peaks
we placed in the spectra will combine to a symmetric peak that
might be equally well fit by a single or two components if they
are heavily blended. Spectral features of two blended compo-
nents of different shape will cause an asymmetry that can make
it easier to decompose them correctly.

A78, page 29 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=27

A&A 628, A78 (2019)

Appendix C: Performance details for GaussPy+

C.1. Performance and execution time for the decomposition
of the training set

Table C.1. Comparison of the execution times for sample B of the syn-
thetic spectra.

treal [min] tCPU [min]

SLSQPLSQFitter 43.06 1868.87
GaussPy+ 2.59 110.01

Table C.2. Comparison of the execution times for the GaussPy+
decomposition of the GRS test field.

Method treal freal tCPU fCPU
[min] [%] [min] [%]

Training set creation 0.39 4.5 16.33 21.3
Training 5.61 64.2 20.86 27.2

Preparation 0.08 0.9 0.28 0.4
Decomposition stage 1 0.32 3.6 9.55 12.4
Decomposition stage 2 0.44 5.0 8.03 10.5
Decomposition stage 3 1.91 21.8 16.69 21.8

We compared the decomposition results and runtime of the
SLSQPLSQFitter fitting routine used to create training sets
for GaussPy (Sect. 3.1.4) with the runtime of the improved fit-
ting routine of GaussPy+ (Sect. 3.2.3). We used both fitting
techniques to decompose sample B of our synthetic spectra
(Appendix B.1). For both algorithms we distributed the decom-
position over 50 CPUs.

In terms of performance the decomposition with the SLSQ-
PLSQFitter could correctly identify 95.4% of the signal com-
ponents and had a false positive fraction of 1.5%. Both of
these values exceed the corresponding numbers for the results
of GaussPy+ (93.7% and 1.6%, respectively, cf. Table 1), which
confirms that our routine for creating training sets produces high
quality decompositions.

Table C.1 lists the results of the execution times: treal is the
elapsed wall clock time from start to finish of the execution of
the decomposition and tCPU is the total amount of spent CPU
time. These results show that the SLSQPLSQFitter fitting rou-
tine is about an order of magnitude slower than GaussPy+, which
is why we recommend to use the former routine only for the
decomposition of spectra for the training set.

C.2. Execution time for the GRS test field

In this section we discuss the execution time of the GaussPy+
algorithm for the decomposition of the GRS test field using the
default settings of GaussPy+ and distributing the computation
over 50 CPUs. Table C.2 shows an overview of the execution
time for all stages of GaussPy+ in terms of wall clock time treal
and total CPU time tCPU as well as their respective relative per-
centages freal and fCPU. The entire GaussPy+ decomposition for
the GRS test field needed treal = 8.74 min and tCPU = 76.74 min.

Since the total size of the GRS test field (4200 spectra) is
relatively small, the creation of the training set and training with
GaussPy amounted to a significant contribution to freal and fCPU,

2.5 3.0 3.5 4.0
S/N

4

5

6

7

S
ig

ni
fic

an
ce

Sample B

96.2

95.0

92.7

87.3

95.1

93.7

91.1

85.6

92.8

91.9

89.6

84.3

88.8

88.4

86.7

82.3

2.5 3.0 3.5 4.0
S/N

Sample C

96.1

94.7

92.2

86.7

94.9

93.4

90.7

85.0

92.7

91.8

89.4

83.9

88.7

88.3

86.6

82.0

2.5 3.0 3.5 4.0
S/N

Sample D

86.1

82.2

71.6

51.7

83.3

81.3

71.6

51.8

73.1

72.3

66.3

49.8

51.1

50.9

48.4

39.3

Fig. C.1. Percentage of correctly identified mean positions of Gaussian
components in the decomposition of samples B–D (left to right) with
varying values for the minimum S/N and significance parameters.

2.5 3.0 3.5 4.0
S/N

4

5

6

7

S
ig

ni
fic

an
ce

Sample B

1.2

1.3

1.5

1.7

1.4

1.6

1.9

2.3

1.9

2.1

2.3

2.7

2.6

2.6

2.8

3.1

2.5 3.0 3.5 4.0
S/N

Sample C

1.2

1.4

1.6

1.8

1.5

1.7

2.1

2.5

2.0

2.1

2.4

2.8

2.6

2.6

2.8

3.1

2.5 3.0 3.5 4.0
S/N

Sample D

4.0

4.6

5.8

9.0

4.3

4.5

5.6

8.7

5.0

5.1

5.6

8.4

6.6

6.6

6.9

8.7

Fig. C.2. Percentage of incorrectly identified mean positions of Gaus-
sian components in the decomposition of samples B–D (left to right)
with varying values for the minimum S/N and significance parameters.

which would be reduced for larger data sets, where the decom-
position steps will need a larger fraction of the total time. We
also report the individual times for the execution of the three
decomposition stages of GaussPy+: the improved fitting routine
(Sect. 3.2.3; Stage 1), phase 1 of the spatially coherent refit-
ting (Sect. 3.3.1, Stage 2), and phase 2 of the spatially coherent
refitting (Sect. 3.3.2, Stage 3). Execution times for the spatially
coherent refitting stages will typically depend on how many cri-
teria are used in the flagging of spectra in Stage 2 and the min-
imum weight threshold Wmin the user selects in Stage 3 (cf.
Fig. C.3).

C.3. Effect of varying minimum S/N and significance

Here we test how changing the values of the minimum S/N
S/Nmin and significance parameter Sfit affects the decomposi-
tion results for our samples of synthetic spectra (Appendix B.1).
We use S/Nmin and Sfit values of [2.5, 3, 3.5, 4] and [4, 5, 6, 7]
respectively, and perform a decomposition with GaussPy+ for
every combination of those values (16 in total). For the spectra
of sample A that contain only white noise we found that with
significance values Sfit ≥ 5 no noise features were fitted. For a
significance value of Sfit = 4 and S/Nmin values of 2.5, 3, 3.5,
and 4, GaussPy+ incorrectly fitted 38, 31, 21, and 8 noise fea-
tures, respectively.

For samples B–D we calculated the percentage of correctly
and incorrectly fitted mean position values of Gaussian compo-
nents for each decomposition run, which are shown in Figs. C.1
and C.2, respectively. We count the mean position of a Gaus-
sian component as correctly detected if it is within ±2 channels
of the true value. If the mean position value of a fitted compo-
nent was more than 4 channels away from the true mean posi-
tions of all signal components in the spectrum we counted it
as an incorrect identification. The decomposition with Sfit = 5
and S/Nmin = 3 corresponds to the GaussPy+ run at its default

A78, page 30 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=28
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=29

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

settings we presented in Sect. 4. Figures C.1 and C.2 demon-
strate the interdependence between the Sfit and S/Nmin parame-
ters. In general, increasing one of these parameters has adverse
effects on the percentage of correct and incorrect detections of
Gaussian components in the synthetic spectra of samples B–D.
However, this adverse effect can be offset by decreasing the value
for the other parameter. The results from Fig. C.2 show that set-
ting the Sfit and S/Nmin parameters to higher values can lead
to a big increase in incorrectly identified fit components. This
increase is due to the large fraction of signal components with
low S/N in our synthetic spectra. If we set the S/Nmin or Sfit
parameters to higher values, those components are either pre-
vented from being fit or are incorrectly fit with one broad com-
ponent instead of multiple narrower ones.

Figures C.1 and C.2 also demonstrate that we could have
improved the decomposition results reported in Sect. 4 by choos-
ing a lower minimum S/N of S/Nmin = 2.5. In principle we could
have even further improved upon that result by also decreas-
ing the required significance value to Sfit = 4, but the results
from the decomposition of sample A demonstrate that this set-
ting would already allow the fit of noise features.

Ultimately, the choice for the values of the S/Nmin and Sfit
parameters needs to be guided by the data set. For the synthetic
spectra we used perfect Gaussian noise properties, which will
likely not be the case for real observational data. Thus users
might want to set higher values for the Sfit parameters to exclude
the fitting of noise features, even though it might result in a
reduction of fitted weaker signal peaks. We constructed the syn-
thetic spectra of samples B–D to contain a large fraction of sig-
nal peaks with amplitudes close to or even below a S/N of 3 to
test how well the GaussPy+ decomposition with default settings
works for weak signal peaks. Decompositions of data sets for
which users expect signal peaks with high S/N will thus likely
benefit from an increase of the values for the S/Nmin and Sfit
parameters.

C.4. Performance of in-built and optional quality control
procedures

Here we discuss the performance of the in-built and optional
quality control procedures described in Sects. 3.2.1 and 3.2.2.
While we report here only on the performance of the in-built
quality criteria for the improved fitting routine, these criteria are
also used in all refit attempts in the spatially coherent refitting
phases.

For ∼34% of the spectra of the GRS test field at least one of
the in-built quality control procedures was used to remove one or
more components in the decomposition with the improved fitting
routine of GaussPy+. For sample A–D of the synthetic spectra
the percentage of spectra for which components were removed
due to failing the in-built quality controls was ∼3%, 20%, 20%
and 22%, respectively. The comparatively larger fraction of
spectra with rejected fit components in the decomposition of the
GRS test field was mostly due to the presence of low-intensity
signal peaks that did not satisfy the criterion for the amplitude
value and imperfect noise properties, which led to the fitting of
noise peaks that did not satisfy the requirement for the signifi-
cance value.

Table C.3 gives the exact number of fit components that were
removed due to the in-built quality controls using the default
settings of GaussPy+. In general, the significance criterion was
most often used and thus is the strictest criterion, followed by
the requirement of a minimum S/N value for the fitted amplitude
and a minimum value for the fitted FWHM. Since the synthetic

Table C.3. Number of fit components removed by the in-built quality
control procedures (Sect. 3.2.1) for the decomposition of the GRS test
field and the synthetic spectra.

Θ a Sfit µ

GRS test field 136 705 1127 16
Sample A 17 7 263 0
Sample B 673 669 836 506
Sample C 690 632 829 492
Sample D 447 585 1975 434

Table C.4. Number of new best fit solutions obtained by utilising the
optional quality control procedures (Sect. 3.2.2) for the decomposition
of the GRS test field and the synthetic spectra.

neg. res. peak Broad Blended

GRS test field 25 542 14
Sample A 0 0 0
Sample B 133 353 40
Sample C 137 354 49
Sample D 2 683 1

spectra were set up to also contain emission in the outermost
channels, the criterion checking whether the fitted mean posi-
tion was within the channel range was also used frequently to
correct fit results for these spectra. The sequence of how the in-
built quality controls are used matters, as for example a com-
ponent that already failed the requirements for the amplitude
value will not be subjected to the significance criterion any-
more (cf. Fig. 3). Thus, had we checked the significance crite-
rion first, it would have been responsible for removing even more
components.

Table C.4 lists the number of successful refits based on the
optional quality control procedures for refitting negative resid-
ual features, broad and blended components for the GRS test
field and the four samples of synthetic spectra. The refitting of
broad fit components into multiple narrower individual compo-
nents was the criterion that led to most successful refits, followed
by the refitting of components that caused negative residual fea-
tures. This mostly reflects the generally low S/N values of signal
peaks in the spectra, for which GaussPy often fits a single broad
Gaussian component over multiple individual signal peaks (cf.
Fig. B.7). The refitting of features labelled as blended did not
yield that many successful refits. The low success rate for refits
based on the criterion for blended components is expected for
the signal peaks in the synthetic spectra, which were constructed
in such a way as to not show heavily blended components. For
the GRS test field, deviations of emission lines from a Gaussian
shape could have caused the fit of multiple blended components,
which resulted in low residuals or AICc values that could not be
matched with the fit of a single component.

C.5. Refit iterations of the spatially coherent refitting phases

In this section we discuss the performance of the two phases
of spatially coherent refitting (Sects. 3.3.1 and 3.3.2). The total
number of refit iterations needed in these two phases depends
on the size of the spectral cube, the number of flags set in
phase 1, and the minimum required weight threshold W cho-
sen in phase 2.

A78, page 31 of 35

A&A 628, A78 (2019)

5 10 15 20 25
Iteration

1

10

100

1000

N
um

be
r o

f s
pe

ct
ra

Phase 1 Phase 2: (= 5
6) (= 4

6) (= 3
6)

Attempted refit Successful refit

Fig. C.3. Number of refit attempts and successful refits of spectra of
the GRS test field for each iteration in the two phases of the spatially
coherent refitting. See Appendix C.5 for more details.

For the GRS test field, the two spatially coherent refitting
phases needed 25 iterations in total to converge to a final fit solu-
tion. Figure C.3 shows the number of attempted and successful
refits for all iterations. Most of the attempted and successful
refits occur in phase 1, which needed 5 iterations. Since in a
new iteration we will only refit spectra if they had not been
flagged in the previous iteration or at least one of the fit solu-
tions of its neighbours got updated, fewer spectra will be refit in
each progressing iteration, which is demonstrated by the steep
decrease of refit attempts in Fig. C.3. For example, in the first
iteration of phase 1, 1839 out of the 4200 spectra were flagged
and selected for refitting. The GaussPy+ algorithm tried to refit
1664 of these flagged spectra18 with new fit solutions derived
from neighbouring spectra, ∼68% of which received a new best
fit solution. In the second iteration, GaussPy+ only tried to refit
556 flagged spectra, of which ∼47% obtained a new best fit
solution.

Figure C.3 further shows the performance of phase 2 of
the spatially coherent refitting, which proceeded in three stages,
since in the default settings of GaussPy+ the minimum required
weight thresholdW is reset to a lower value two times. The run-
time of phase 2 can therefore be decreased by setting a higher
minimum weight threshold (e.g. Wmin = 4/6), which should
already lead to good spatial coherence between the neighbour-
ing fit solutions.

In terms of total added and subtracted number of components
for the decomposition of the GRS test field, phase 1 removed
226 components and added 295, whereas phase 2 subtracted
84 components and added 191 components. About 13% of the
added components in phase 2 led to fit solutions being flagged
as blended.

Appendix D: Normality tests

As discussed in Sect. 3.2.1, as a goodness of fit check we sub-
ject the normalised residual to two normality tests to decide
whether the data points of the residual are normally dis-
tributed and thus consistent with Gaussian noise. We found that
a combination of the two-sided Kolmogorov–Smirnov (K–S)
test (Kolmogorov 1933; Smirnov 1939) and the normality test
based on D’Agostino and Pearson (D–P; D’Agostino 1971;

18 For the remaining 175 flagged spectra no unflagged neighbouring fit
solutions were available.

0%

20%

40%

60%

80%

100%

p-
va

lu
e

<
0.

01

S/N = 3
1: K-S
2: K-S (mask)
3: D-P
4: D-P (mask)
Combination of 2, 3 and 4 S

 = 5

S/N = 4

0%

20%

40%

60%

80%

100%

p-
va

lu
e

<
0.

01

S
 = 7

200 400 600 800 1000
Nchan

0%

20%

40%

60%

80%

100%

p-
va

lu
e

<
0.

01

200 400 600 800 1000
Nchan

S
 = 9

Fig. D.1. Comparison of the performance of different normality tests for
mock residuals as a function of the number of spectral channels. The
residuals contain a single Gaussian signal component with a signal-to-
noise ratio of 3 or 4 (left and right panels, respectively) and significance
values of 5, 7, and 9 (upper, middle, and lower panels, respectively). See
Appendix D for more details.

D’Agostino & Pearson 1973) yielded the most reliable means
to detect unfitted signal peaks in the residual.

We tested the performance of each normality test for mock
residuals that we created by adding a single Gaussian compo-
nent to white noise. We used six different combinations of the
S/N and significance values for the Gaussian components. We
also varied the number of spectral channels between 100 and
1000 in steps of 100. We produced 1000 spectra for each possible
combination of Gaussian signal component and number of spec-
tral channels for a total of 60 000 spectra. We then applied the
normality tests to each of these mock residuals to check which
test could most reliably identify the leftover signal component
by rejecting the null hypothesis of normally distributed residual
values.

Figure D.1 shows the performance of the normality tests for
the different combinations. On the ordinate we plot the percent-
age of spectra for which the normality tests yielded p-values
below the default threshold in GaussPy+ of 1%, which is used as
an indication that the residual data points are not normally dis-
tributed. The results of the K–S and D–P test are shown in blue
and red, respectively. Moreover, we applied both normality tests
on the whole residual and only the residual data points within
the identified signal ranges, which is indicated by the filled and
unfilled symbols, respectively. The black line shows the per-
formance of the null hypothesis testing included in GaussPy+,
which combines the results of the D–P test applied to the full
residual and the results of the D–P and K–S tests applied to
only the residual data points within the identified signal inter-
vals. For this combination, we use the smallest p-value resulting

A78, page 32 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=30
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=31

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

Table D.1. Percentage of false positives identified by the normality
tests.

Test Combination K–S D–P

Median 2.2% 5.5% 7.6%
Minimum 1.4% 0.3% 1.1%
Maximum 3.3% 11.5% 13.9%

from these three normality tests. Figure D.1 demonstrates that
this combination results in an increased ability to detect leftover
signal peaks in the residual for both narrow and broad com-
ponents (with low and high significance values, respectively).
We are able to identify the majority of residual peaks in every
tested case apart from the one with the weakest component (S =
5, S/N = 3). The identification fraction reaches nearly 100%
for the strongest tested residual peaks (S = 9, S/N = 4). More-
over, this improved performance is independent of the number
of spectral channels. In comparison, the individual results of the
K–S and D–P tests show a decreased performance and even a
complementary behaviour for broader Gaussian residual peaks
with lower S/N values (S = 9, S/N = 3) and low number of
spectral channels (<300).

To check the fraction of false positives identified by the nor-
mality tests, we checked their performance also for Gaussian
noise only, for which we removed the signal component from all
residuals used in Fig. D.1. We evaluate the spectra again in groups
of 1000 spectra and report the median, minimum and maximum
false positive rate for all groups as the fraction of spectra for which
the hypothesis tests yielded a p-value <1% and thus would not
pass our criterion for normally distributed residuals.

Table D.1 lists the false positive rates. The combination of
normality tests as implemented in GaussPy+ leads to the best
performance over different channel ranges, as evidenced by the
reduced median false positive rate compared to the individual
normality tests. The K–S and D–P tests produce higher false pos-
itive rates with increasing numbers of spectral channels, whereas
the combination of the two tests performed best for the highest
number of spectral channels we probed.

Appendix E: χ2
red

calculations for the GRS test field

A problem in determining the χ2
red value is that it depends on the

number of channels in the spectrum. If the spectrum consists of
many channels that contain only noise, low χ2 values and χ2

red
values close to 1 follow even if the performance of the fit is not
satisfactory in the part of the spectrum where there is signal.

To avoid this problem we identify the regions likely to contain
signal already in the noise estimation step (see Sect. 3.1.2) and use
only these regions for theχ2

red calculations. We also mask negative
noise spike features that tend to produce high χ2

red values even for
spectra whose signal features were well fit (see Sect. 3.1.3).

To illustrate the importance of restricting the χ2
red calculation

to intervals containing signal we recomputed the goodness of fit
calculations for the decomposition results of the GRS test field
(Sect. 5.3) obtained with GaussPy and after stage 3 of GaussPy+
by using all available spectral channels. Panels a and b in Fig. E.1

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

a)
GaussPy (all channels)

b)
GaussPy+ (Stage 3; all channels)

55.3°55.4°55.5°55.6°
Galactic Longitude

+00.1°

+00.2°

+00.3°

G
al

ac
tic

 L
at

itu
de

c)
GaussPy

55.3°55.4°55.5°55.6°
Galactic Longitude

d)
GaussPy+ (Stage 3)

0.5

1.0

1.5

2.0

2.5

3.0

2 re
d

Fig. E.1. Maps showing the χ2
red values for the GaussPy (left panels)

and stage 3 of the GaussPy+ (right panels) decomposition results, cal-
culated by using either all available spectral channels (upper panels) or
restricted to the spectral channels estimated to contain signal. All panels
are overplotted with the contour from panel b in Fig. 13. Panels c and d
are identical to panels i and l in Fig. 16.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
2
red

0

50

100

150

200

250

300

350

N
um

be
r o

f s
pe

ct
ra

GaussPy+ (Stage 3)
GaussPy+ (Stage 3)
all channels
GaussPy
Gausspy
all channels

Fig. E.2. Comparison of the distribution of the χ2
red values for the

decomposition results of GaussPy and Stage 3 of GaussPy+ restricted
to spectral channels estimated to contain signal and calculated over the
whole spectral range.

show the recomputed χ2
red values using all 424 spectral channels.

For comparison, we also show the maps of χ2
red values again that

were obtained by restricting the goodness of fit calculations to
spectral channels estimated to contain signal (panels c and d,
which are identical to panels m and p in Fig. 16). Figure E.2
gives the corresponding histograms. Both figures clearly illus-
trate how the goodness of fit values are artificially reduced if
most of the spectral channels included in the calculation contain
only noise. Using all available spectral channels for the good-
ness of fit calculations thus makes it more challenging to use the
χ2

red values to decide which fit results were not successful.

A78, page 33 of 35

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=32
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935519&pdf_id=33

A&A 628, A78 (2019)

Appendix F: Symbols, GaussPy+ keywords and
default values

Table F.1 gives the description of symbols used throughout the
text. Table F.2 gives an overview of the parameter settings of
GaussPy+, listing their corresponding default values and sym-

bols used throughout the text. To get first decomposition results
users only need to supply values for the parameters listed under
essential parameters. In case the decomposition does not yield
good results we recommend to first use different values for the
essential parameters. If this should not improve the results users
can vary the parameters listed under more advanced settings.

Table F.1. Symbols used throughout the text.

Symbol Description

µi Offset or mean position of Gaussian fit component i
ai Amplitude of Gaussian fit component i
σi Standard deviation of Gaussian fit component i
Θi FWHM value of Gaussian fit component i
χ2

red Reduced chi-squared; chi-squared per degree of freedom
AICc Corrected Akaike information criterion
F1 score measure of the accuracy for the decomposition of the training set (Sect. 2.1)
σrms Root-mean-square noise of the spectrum
σ(T ∗A) Root-mean-square noise of the spectrum given in antenna temperature values T ∗A
Nchan Number of channels in a spectrum
Ncomp Number of fitted Gaussian components in a spectrum
Sdata Significance estimate for signal peaks (Sect. 3.2.1)
Sfit Significance estimate for fitted Gaussian components (Sect. 3.2.1)
Ftot Sum of the Fblended, Fneg. res. peak, FΘ, Fresidual, and FNcomp flags
W Weight threshold

Table F.2. GaussPy+ keywords mentioned throughout the text.

Symbol Description GaussPy+ keyword Default

Essential parameters
α1 First smoothing parameter used in GaussPy decomposition (Sect. 2.1) alpha1 None
α2 Second GaussPy smoothing parameter; only used in two-phase decomposi-

tion (Sect. 2.1)
alpha2 None

S/Nmin Minimum S/N for signal peaks in the data (Sect. 3.2.1) snr 3
Smin Minimum significance value for signal peaks and fitted Gaussian compo-

nents (Sect. 3.2.1)
significance 5

More advanced settings
∆µmax Maximum difference in offset positions of Gaussian components for group-

ing (Sect. 3.3.1)
mean_separation 2 (∗)

∆Θmax Maximum difference in FWHM values of Gaussian components for group-
ing (Sect. 3.3.1)

fwhm_separation 4 (∗)

Θmin Minimum value for the FWHM of fitted Gaussian components min_fwhm 1 (∗)

Θmax Maximum value for the FWHM of fitted Gaussian components max_fwhm None (∗)

fa Factor by which the maximum data value is multiplied to get a maximum
limit for the fitted amplitude ai

max_amp_factor 1.1

fΘ Factor by which the FWHM value of a fit component has to exceed all other
(neighbouring) fit components to get flagged (Sect. 3.2.2)

fwhm_factor 2

fsep Factor to determine the minimum required separation between two fit com-
ponents before they are counted as blended (Sect. 3.2.2)

separation_factor 1/
√

2 ln 2

fw Factor that determines the weight given to neighbouring spectra located at
a distance of 1 and 2 pixels (Sect. 3.3.2)

weight_factor 2

Notes. (∗)Have to be specified in channel units.

A78, page 34 of 35

M. Riener, et al.: GaussPy+: A fully automated Gaussian decomposition package for emission line spectra

Table F.2. continued.

Symbol Description GaussPy+ keyword Default

Fneg. res. peak Flag criterion for negative residual features (Sect. 3.2.2) flag_neg_res_peak True
FΘ Flag criterion for broad fit components (Sect. 3.2.2) flag_broad True
Fblended Flag criterion for blended fit components (Sect. 3.2.2) flag_blended True
Fresidual Flag criterion for fit results whose normalised residual values do not pass

the tests for normality (Sect. 3.2.2)
flag_residual True

FNcomp Flag criterion for fit results whose number of components are not compati-
ble with neighbouring fits (Sect. 3.2.2)

flag_ncomps True

Npad Number of spectral channels added to the left and right of signal intervals
(Sect. 3.1.2)

pad_channels 5 (∗)

Nmin Minimum number of spectral channels the signal intervals in a spectrum
must have (Sect. 3.1.2)

min_channels 100 (∗)

∆Nmax Maximum allowed difference in Ncomp between fit solution and weighted
median number of components determined from all immediate neighbours
(Sect. 3.2.2)

max_diff_comps 1

∆Njump Maximum allowed difference in Ncomp between individual neighbouring
spectra (Sect. 3.2.2)

max_jump_comps 2

Njump Maximum number of allowed ∆Njump occurrences for a single spectrum
(Sect. 3.2.2)

n_max_jump_comps 1

PLimit Probability threshold for features of consecutive positive or negative chan-
nels to be counted as more likely to be a noise feature (Sect. 3.1.1,
Appendix A)

p_limit 0.02

p-value p-value for the null hypothesis that the residual resembles a normal distri-
bution (Sect. 3.3.1)

min_pvalue 0.01

S/Nmin,fit Minimum S/N (=ai/σrms) for fitted Gaussian components (Sect. 3.2.1) snr_fit None
S/Nmin, neg Minimum S/N for negative peaks in the spectrum (Sect. 3.2.2) snr_negative None
S/Nspike S/N threshold for noise spikes (Sect. 3.1.3) snr_noise_spike 5
SNR1 S/N threshold used by GaussPy for the original spectrum snr_thresh None
SNR2 S/N threshold used by GaussPy for the second derivative of the smoothed

spectrum
snr2_thresh None

ξ Minimum number of spectral channels a peak has to contain on either side
(Sect. 3.1.4)

order 6 (∗)

Wmin Minimum weight threshold before phase 2 of the spatially coherent refitting
routine is terminated (Sect. 3.3.2)

min_weight 0.5

A78, page 35 of 35

	Introduction
	Archival data and methods
	The GAUSSPY algorithm
	13CO data

	New decomposition package: GaussPy+
	Preparatory steps
	Noise estimation
	Identification of signal intervals
	Masking noise artefacts
	Creation of the training set

	Improving the GAUSSPY decomposition
	In-built quality control
	Optional quality control
	Improved fitting routine

	Spatially coherent refitting
	Phase 1: Refitting of the flagged fits
	Phase 2: Refitting of the spatially incoherent fits

	Performance of GaussPy+ on samples of synthetic spectra
	Performance of GaussPy+ on a GRS test field
	Optimal flux estimate for fair comparisons between the data set and decomposition results
	Noise map
	Comparison between the decomposition runs with GaussPy and GaussPy+

	Discussion
	Applications and limitations of GaussPy+
	Recommended settings for GAUSSPY+

	Summary
	References
	Markov chain
	Testing GaussPy+ on syntheticspectra
	Sample of synthetic spectra
	Performance of the automated noise estimation routine
	Performance of the identification of signal intervals
	Performance of the masking of noise artefacts
	Performance of the automated decomposition routine for the training set
	Performance of the Gaussian decomposition
	Recovery of identical components with different S/N and degrees of blendedness

	Performance details for GaussPy+
	Performance and execution time for the decomposition of the training set
	Execution time for the GRS test field
	Effect of varying minimum S/N and significance
	Performance of in-built and optional quality control procedures
	Refit iterations of the spatially coherent refitting phases

	Normality tests
	2red calculations for the GRS test field
	Symbols, GaussPy+ keywords and default values

