110 research outputs found

    Patterns and trends of topsoil carbon in the UK: complex interactions of land use change, climate and pollution

    Get PDF
    The UK Countryside Survey (CS) is a national long-term survey of soils and vegetation that spans three decades (1978–2007). Past studies using CS data have identified clear contrasting trends in topsoil organic carbon (tSOC) concentrations (0–15 cm) related to differences between habitat types. Here we firstly examine changes in tSOC resulting from land use change, and secondly construct mixed models to describe the impact of indirect drivers where land use has been constant. Where it occurs, land use change is a strong driver of SOC change, with largest changes in tSOC for transitions involving SOC-rich soils in upland and bog systems. Afforestation did not always increase tSOC, and the effect of transitions involving woodland was dependent on the other vegetation type. The overall national spatial pattern of tSOC concentration where land use has been constant is most strongly related to vegetation type and topsoil pH, with contributions from climate variables, deposition and geology. Comparisons of models for tSOC across time periods suggest that declining SO4 deposition has allowed recovery of topsoils from acidification, but that this has not resulted in the increased decomposition rates and loss of tSOC which might be expected. As a result, the relationship between pH and tSOC in UK topsoils has changed significantly between 1978 and 2007. The contributions of other indirect drivers in the models suggest negative relationships to seasonal temperature metrics and positive relationships to seasonal precipitation at the dry end of the scale. The results suggest that the CS approach of long-term collection of co-located vegetation and soil biophysical data provides essential tools both for identifying trends in tSOC at national and habitat levels, and for identifying areas of risk or areas with opportunities for managing topsoil SOC and vegetation change

    Technical note: A bootstrapped LOESS regression approach for comparing soil depth profiles

    Get PDF
    Understanding the consequences of different land uses for the soil system is important to make better informed decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped LOESS regressions (BLRs). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil organic carbon (SOC). While this straightforward non-parametric approach may be most useful in comparing SOC profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles

    Operationalising a metric of nitrogen impacts on biodiversity for the UK response to a data request from the Coordination Centre for Effects

    Get PDF
    As a signatory party to the Convention on Long Range Transboundary Air Pollution (CLRTAP), the UK has been requested to provide biodiversity metrics for use in assessing impacts of atmospheric nitrogen (N) pollution. Models of soil and vegetation responses to N pollution can predict changes in habitat suitability for many plant and lichen species. Metrics are required to relate changes in a set of species to biodiversity targets. In a previous study, the suitability of the habitat for a set of positive indicator-species was found to be the measure, out of potential outputs from models currently applicable to the UK, which was most clearly related to the assessment methods of habitat specialists at the Statutory Nature Conservation Bodies (SNCBs). This report describes the calculation of values for a metric, based on this principle, for a set of example habitats under different N pollution scenarios. The examples are mainly from Natura-2000 sites, and are defined at EUNIS Level 3 (e.g. F4.1 Wet heath). Values for the biodiversity metric were shown to be greater on all sites in the “Background” scenario than in the scenario with greater N and S pollution, illustrating a positive response of biodiversity to reduced pollution. Results of the study were submitted in response to the ‘Call for Data 2012-14’ by the CLTRAP Co-ordination Centre for Effects (CCE), and presented at the 24th CCE Workshop in April 2014. Metrics calculated on a similar basis were also presented by the Netherlands, Switzerland and Denmark. Such metrics indicate biodiversity status more accurately than other types of metric such as Simpson index or similarity to a reference community, so it was decided to adopt habitat-suitability for positive indicator-species as a common basis for a biodiversity metric in this context. Further work is needed to determine the typical range of metric values in different habitats, and threshold values for damage and recovery. Requirements are likely to be specified in detail in the next CCE Call for Data. The current study shows that a biodiversity metric based on habitat-suitability for positive indicator-species is a useful and responsive method for summarising outputs of models of air pollution impacts on ecosystems

    Environment and Rural Affairs Monitoring & Modelling Programme - ERAMMP Year 1 Report 15: Responsive Monitoring Part 1 - Selection of ERAMMP field survey squares

    Get PDF
    A reduction in the number of GMEP squares to be revisited in the ERAMMP field survey is required to meet budgetary constraints whilst ensuring the survey will deliver the most robust evidence base which is responsive to such issues as the actual uptake of different Glastir interventions by contract-holders/land-managers and the capture of those within the baseline GMEP survey. An approach was needed which would maximise outputs matched to policy priorities for assessing national trends, provide evidence for the outcomes of Glastir interventions and optimise where changes were most likely to be detected. The target is to reduce survey squares from 300 to 240 1km squares

    Multiple soil map comparison highlights challenges for predicting topsoil organic carbon concentration at national scale

    Get PDF
    Soil organic carbon (SOC) concentration is the fundamental indicator of soil health, underpinning food production and climate change mitigation. SOC storage is highly sensitive to several dynamic environmental drivers, with approximately one third of soils degraded and losing carbon worldwide. Digital soil mapping illuminates where hotspots of SOC storage occur and where losses to the atmosphere are most likely. Yet, attempts to map SOC often disagree. Here we compare national scale SOC concentration map products to reveal agreement of data in mineral soils, with progressively poorer agreement in organo-mineral and organic soils. Divergences in map predictions from each other and survey data widen in the high SOC content land types we stratified. Given the disparities are highest in carbon rich soils, efforts are required to reduce these uncertainties to increase confidence in mapping SOC storage and predicting where change may be important at national to global scales. Our map comparison results could be used to identify SOC risk where concentrations are high and should be conserved, and where uncertainty is high and further monitoring should be targeted. Reducing inter-map uncertainty will rely on addressing statistical limitations and including covariates that capture convergence of physical factors that produce high SOC contents

    Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations

    Get PDF
    Fertilization of nitrogen (N)-limited ecosystems by anthropogenic atmospheric nitrogen deposition (Ndep) may promote CO2 removal from the atmosphere, thereby buffering human effects on global radiative forcing. We used the biogeochemical ecosystem model N14CP, which considers interactions among C (carbon), N and P (phosphorus), driven by a new reconstruction of historical Ndep, to assess the responses of soil organic carbon (SOC) stocks in British semi-natural landscapes to anthropogenic change. We calculate that increased net primary production due to Ndep has enhanced detrital inputs of C to soils, causing an average increase of 1.2 kgCm−2 (c. 10%) in soil SOC over the period 1750–2010. The simulation results are consistent with observed changes in topsoil SOC concentration in the late 20th Century, derived from sample-resample measurements at nearly 2000 field sites. More than half (57%) of the additional topsoil SOC is predicted to have a short turnover time (c. 20 years), and will therefore be sensitive to future changes in Ndep. The results are the first to validate model predictions of Ndep effects against observations of SOC at a regional field scale. They demonstrate the importance of long-term macronutrient interactions and the transitory nature of soil responses in the terrestrial C cycle

    Modelling Landscape-scale Species Response to Agri-Environment Schemes

    Get PDF
    Agri-environment schemes (AES) are the most significant environmental policy delivery mechanism in England, and include the conservation of biodiversity as a key objective. Provisional results from the ongoing Landscape-scale species monitoring of AES (LandSpAES) baseline field survey have shown some positive responses of mobile taxa to AES gradients at local (1km2) or landscape (3 × 3km) scales. However, it is not known whether these provisional results might be more broadly applicable outside the regions surveyed in the LandSpAES project, i.e. in other regions, or nationally. Here, we present the findings of an analytical project to explore the use of national Citizen Science (CitSci) scheme data, to investigate whether similar relationships with AES gradients would be found at a national scale in CitSci data to those shown with LandSpAES data, and whether integrated modelling was possible with combined CitSci and LandSpAES datasets. The design of LandSpAES has high power to detect AES effects, including the independent testing of the local and landscape AES gradients, but is restricted to six regions. The national CitSci are more representative of England as a whole, but have not been designed to detect AES effects. The aim of this project was to determine whether the provisional taxon responses to the AES gradients found in the LandSpAES project could be detected at a national scale using CitSci scheme data. To achieve this aim, three key questions were addressed through the analytical work: 1) Can addition of covariates account for environmental variation between survey squares in each dataset, to improve the comparability of AES gradient effects between LandSpAES and CitSci schemes? 2) Do the CitSci scheme datasets show similar relationships between taxa responses and the AES gradients, to those found with the LandSpAES data? 3) Can integrated approaches to combining datasets be used to jointly model CitSci and LandSpAES data, and does integrated modelling reduce uncertainty in quantifying the effects of AES gradients on taxa responses at a national scale across England

    Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    Get PDF
    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land

    Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    Get PDF
    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land
    corecore