research

Operationalising a metric of nitrogen impacts on biodiversity for the UK response to a data request from the Coordination Centre for Effects

Abstract

As a signatory party to the Convention on Long Range Transboundary Air Pollution (CLRTAP), the UK has been requested to provide biodiversity metrics for use in assessing impacts of atmospheric nitrogen (N) pollution. Models of soil and vegetation responses to N pollution can predict changes in habitat suitability for many plant and lichen species. Metrics are required to relate changes in a set of species to biodiversity targets. In a previous study, the suitability of the habitat for a set of positive indicator-species was found to be the measure, out of potential outputs from models currently applicable to the UK, which was most clearly related to the assessment methods of habitat specialists at the Statutory Nature Conservation Bodies (SNCBs). This report describes the calculation of values for a metric, based on this principle, for a set of example habitats under different N pollution scenarios. The examples are mainly from Natura-2000 sites, and are defined at EUNIS Level 3 (e.g. F4.1 Wet heath). Values for the biodiversity metric were shown to be greater on all sites in the “Background” scenario than in the scenario with greater N and S pollution, illustrating a positive response of biodiversity to reduced pollution. Results of the study were submitted in response to the ‘Call for Data 2012-14’ by the CLTRAP Co-ordination Centre for Effects (CCE), and presented at the 24th CCE Workshop in April 2014. Metrics calculated on a similar basis were also presented by the Netherlands, Switzerland and Denmark. Such metrics indicate biodiversity status more accurately than other types of metric such as Simpson index or similarity to a reference community, so it was decided to adopt habitat-suitability for positive indicator-species as a common basis for a biodiversity metric in this context. Further work is needed to determine the typical range of metric values in different habitats, and threshold values for damage and recovery. Requirements are likely to be specified in detail in the next CCE Call for Data. The current study shows that a biodiversity metric based on habitat-suitability for positive indicator-species is a useful and responsive method for summarising outputs of models of air pollution impacts on ecosystems

    Similar works