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Abstract. Understanding the consequences of different land
uses for the soil system is important to make better in-
formed decisions based on sustainability. The ability to as-
sess change in soil properties, throughout the soil profile, is
a critical step in this process. We present an approach to ex-
amine differences in soil depth profiles between land uses
using bootstrapped LOESS regressions (BLRs). This non-
parametric approach is data-driven, unconstrained by distri-
butional model parameters and provides the ability to deter-
mine significant effects of land use at specific locations down
a soil profile. We demonstrate an example of the BLR ap-
proach using data from a study examining the impacts of
bioenergy land use change on soil organic carbon (SOC).
While this straightforward non-parametric approach may be
most useful in comparing SOC profiles between land uses, it
can be applied to any soil property which has been measured
at satisfactory resolution down the soil profile. It is hoped
that further studies of land use and land management, based
on new or existing data, can make use of this approach to
examine differences in soil profiles.

1 Introduction

Understanding the consequences of different land uses for
the soil system is important to better inform decisions based
on sustainability (Foley et al., 2005; Haygarth and Ritz,
2009). The ability to assess change in soil properties affected
by altered land use or management is therefore a critical step
in this process. The greatest change is likely in the surface
layers with factors such as tillage and plant inputs impacting
the physical, chemical and biological properties of the soil.
Many soil properties, however, will also be modified below

this depth, particularly as time since land use change (LUC)
increases (Poeplau et al., 2011). It is therefore important that
changes can be assessed below the topsoil and throughout the
soil profile.

As a prime example, a number of studies, including global
meta-analyses, have summarised the impacts of LUC on soil
organic carbon (SOC) concentration and stocks (e.g. Guo and
Gifford, 2002; Maquere et al., 2008; Laganière et al., 2010;
Poeplau et al., 2011). SOC (sensu organic matter) is gener-
ally concentrated in the top 30 cm of the soil and so LUC
is generally expected to have the greatest impact on SOC in
these upper layers (Lorenz and Lal, 2005; Laganière et al.,
2010). Even within this surface soil, however, the magnitude
and sometimes direction of the effects of LUC on SOC can
depend on the depth that is being considered (Guo and Gif-
ford, 2002; Popelau et al., 2011). It is also becoming more
evident that, in addition to there being a large proportion of
total SOC stocks resident in the subsoil, important C dynam-
ics may also occur deeper in the soil (Jobbágy and Jackson,
2000; Lorenz and Lal, 2005).

The turnover time of SOC generally increases with depth
and hence the stabilisation of C may take place in deeper
soil. Stabilisation pathways are likely through biochemical
stabilisation driving reduced decomposition, by the inherent
recalcitrance of root litter (e.g. lignins) and by physicochem-
ical stabilisation (e.g. complexing with minerals and clay in
subsoils) (Lorenz and Lal, 2005). Conversely, priming of the
decomposition of older SOC may occur following LUC, es-
pecially with woody species (see Fontaine et al., 2007). This
is particularly relevant for LUC to perennial vegetation or
forest where deeper rooting plants are involved. For exam-
ple, the root systems of perennial or tree species are likely
to be more permanent and extensive in the subsoil, with a
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greater contribution of recalcitrant litter and potential prim-
ing down the soil profile (Fontaine et al., 2007). Altered land
use or management may also impact the translocation of par-
ticulate and dissolved organic C likely to occur down the soil
profile via effects on leaching. Such mechanisms may pro-
duce more complex relationships between soil depth and soil
characteristics, and even discontinuous horizonation, rather
than linear gradients.

2 Existing approaches to model soil depth profiles

Differences in SOC across transitions and soil depth pro-
files can be tested with both land use and depth included as
fixed factors in an interaction model, and appropriate random
terms to account for non-independence of depth increments
within the same core and/or plots. There are, however, var-
ious potential modelling approaches that have been used to
examine soil depth profiles including, for example, modified
exponential decay (Maquere et al., 2008), depth distribution
functions which utilise multiple regression (Indorante et al.,
2013) and spline functions (Bishop et al., 1999; Malone et al.,
2009; Wendt and Hauser, 2013). Another common method
for non-linear modelling is the use of generalised additive
models (Hastie and Tibshirani, 1990).

Recent work modelling depth profiles has focussed on de-
riving parametric non-linear relationships between soil depth
and the response of interest. Maquere et al. (2008) adopt a
parametric form with modified exponential decay, whereas
Myers et al. (2011) use an approach based on asymmetric
peak functions. Whilst capturing the non-linear form of the
soil depth profile, neither exponential decay nor polynomial
methods adequately handle the associated uncertainty and
hence confidence intervals, with the method in Maquere et
al. (2008) assuming a t distribution and the method in Myers
et al. (2011) failing to produce confidence envelopes at all.
Regression-based approaches similar to the popular GAM
method have also been adopted using multiple covariates to
account for any non-linearity (Indorante et al., 2013) and fit-
ting cubic splines directly (Wendt and Hauser, 2013). How-
ever, the multiple regression approach assumed a normal dis-
tribution of the response variables, which is often not re-
alised, and the cubic spline method presented by Wendt and
Hauser does not provide any measure of uncertainty.

Non-linear relationships between SOC and soil depth
across LUC transitions can also be incorporated by the in-
clusion of flexible splines (Bishop et al., 1999; Wood, 2003;
Malone et al., 2009). In particular, the use of equal-area
smoothing splines has long been considered as a beneficial
approach to alleviate issues of modelling continuous soil
depth functions using increment or horizon data (Bishop et
al., 1999) and recent work has utilised the approach in the
large-scale mapping of soil properties (Malone et al., 2009;
Odgers et al., 2012; Adhikari et al., 2014). Equal-area spline
functions consist of locally fitted quadratic functions tied

together with knots at horizon boundaries (Malone et al.,
2009), and the areas under/over the fitted curve optimised for
equality in each horizon (Bishop et al., 1999). Confidence
intervals and significance tests are, however, based upon the
assumption that the response variable is drawn from the ex-
ponential family of distributions and inference is very sensi-
tive to this assumption. Malone et al. (2009), in their study
mapping continuous depth functions of SOC and water stor-
age, highlighted the need for better estimation of uncertainty
in such model outputs, suggesting the use of simulation and
re-sampling approaches.

Simulation and re-sampling techniques avoid the necessity
to assume a distributional form for the response variable in
order to obtain confidence intervals and test hypotheses. Such
approaches are rarely used to investigate soil depth relation-
ships despite the often flawed assumptions made by the more
commonly applied methods. Clifford et al. (2014) adopted a
simulation routine from a master database to impute missing
values, and this clearly demonstrated another strength of the
simulation approach, though they did not apply the method
directly to test specific hypotheses relating to changes along
the soil profile.

We sought to develop an approach which (1) would be
able to compare and test for significant differences between
potentially non-linear depth profiles of land uses (or across
land use transitions), (2) did not need to meet any parametric
distribution assumptions given that individual datapoints in
soil datasets are typically non-independent (i.e. vertically or
horizontally nested measurements) and (3) would be gener-
ally applicable regardless of specific contexts of land use and
soil type. Below, we describe the resulting non-parametric
approach and provide an example comparing SOC depth pro-
files across a land use transition.

3 A bootstrapped LOESS regression (BLR) approach

The developed approach combines bootstrapped resampling
of data with local least-squares-based polynomial smooth-
ing (LOESS) regression. Consequently, this non-parametric
method benefits from being data-driven and unconstrained
by distributional form or rigid model parameterisation. Like
spline approaches (Malone et al., 2009; Wendt and Hauser,
2013), it does not assume constant values for soil layers or
horizons. Such a non-parametric approach is highly suitable
where data are non-independent. This is particularly appli-
cable in soil profiles where measurements made in depth
increments down a soil profile may be correlated and even
more relevant where data are cumulative (e.g. cumulative C
stocks). It is also appropriate where soil cores have been sam-
pled using a nested spatial design with multiple cores taken
from within plots.

The BLR approach is intended to make use of soil data
which have been measured at fixed-depth intervals down the
soil profile at a generally high resolution, or at least at a res-
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olution satisfactory for the purposes of an assessment. The
vertical sampling resolution is not limited to any specific
depth interval (e.g. 10 cm increments) but clearly a greater,
and regular, resolution provides more detailed information
on potential differences and their specific location in the soil
profile. Low sample sizes will affect the amount of smooth-
ing that can be done by the LOESS algorithm. As the al-
gorithm fits polynomial regressions within local neighbour-
hoods, the definition and size of the neighbourhood deter-
mines the smoothness and sensitivity of the fitted regression
line. Typically a minimum of three observations per neigh-
bourhood would be required.

The initial dataset comprises all data for the soil variable of
interest from the two land uses (LU1∪LU2 =LUALL) which
are to be compared, with the associated depth and/or soil
mass as reference. A subset is then created containing only
data from the “second” land use (LU2). In theory, it does
not matter which of the land uses are subsetted for LU2 but
one may be more intuitive given the direction of a specific
land use transition. It is also useful to plot the data to de-
termine whether the datasets contain outliers that may need
to be excluded before bootstrapping to prevent skewing the
LOESS regression. For cumulative mass-based data, if dat-
apoints from the bottom depths of either LU1 or LU2 are at
distinctly greater cumulative masses than others, these could
also be trimmed so that the comparison is made to the same
approximate lower bounds of the reference. Using a large
number of bootstrap samples, however, should negate the
need for extensive data cleansing prior to analysis.

The combined data (LUALL) are re-sampled by bootstrap
with replacement, with the number of datapoints resampled
equal to the number of datapoints in LU2. This is repeated
n= 1000 times. Each bootstrapped set of data is then mod-
elled using LOESS regression, and these regressions are used
to generate 95 % confidence intervals around a modelled soil
depth profile by taking pointwise percentiles at each depth.
As each subsample is taken from the union of the two land
uses, this confidence interval (or confidence envelope) rep-
resents the null hypothesis that there is no difference be-
tween the LU1 and LU2. The data from only LU2 are then
modelled using LOESS regression; if the modelled line for
the LU2 profile sits outside the confidence envelope of the
null hypothesis it can be inferred that the soil variable is sig-
nificantly different between LU1 and LU2 at that particular
point in the profile. Overall P values for the difference be-
tween depth profiles can be obtained by taking normalised
test statistics across the full set of bootstrap samples and tak-
ing the percentile of these values corresponding to the same
statistic obtained from the LU2 data. This is a similar ap-
proach to that adopted in the spatial statistics literature when
analysing K functions under resampling as demonstrated in
Diggle et al. (2007) and Henrys and Brown (2009) for exam-
ple.

This relatively straightforward non-parametric method
may be most useful in comparing SOC profiles between land

uses, but it can be applied to any soil property which has
been measured at satisfactory resolution down the soil pro-
file. Many of these other properties measured in soil (e.g.
bulk density, pH, root biomass) can vary in a non-linear fash-
ion down the soil profile, with potential horizonation. The ef-
fects of land use change are typically examined using either
a paired-site or chronosequence approach. These assume that
each paired or chronosequence site only differs in their age
or, for example, time since disturbance and have comparable
biotic and abiotic histories (Laganière et al., 2010). While
this BLR method benefits from being unconstrained by as-
sumptions of parametric methods, it must still satisfy the as-
sumptions of the paired-site and chronosequence approaches,
particularly if space-for-time substitution is used (Indorante
et al., 2013). Here, we provide an example comparing SOC
depth profiles between land uses. The approach is, however,
not limited to comparing soil depth profiles between land
uses. It could also be usefully adopted to examine, for exam-
ple, depth functions in lake systems or to compare temporal
trajectories in soil metrics between experimental treatments.

4 Applying a BLR approach – an example of bioenergy
land use change

The bootstrap re-sampling and LOESS regression used to test
differences between soil profiles was conducted using the R
statistical programming language (R Core Team, 2015). Ex-
ample code to demonstrate the BLR approach using real data
is available via http://doi.org/10/f3jp5d (Keith et al., 2015).
These data are from a study examining the impacts of bioen-
ergy LUC on SOC in the UK (Rowe et al., 2016). A LUC
transition from arable to short-rotation coppice (SRC) wil-
low was selected, and the data were separated into subsets of
those from each component of the transition (i.e. arable and
SRC willow samples) before analysis. Data on SOC concen-
tration (expressed as a percentage), cumulative SOC stock
and cumulative dry soil mass were derived at 10 cm incre-
ments to 1 m depth in order to construct fixed-depth pro-
files of SOC concentration (Figs. 1a, 2a and c) and mass-
based depth profiles of SOC stocks (i.e. the relationship be-
tween soil mass and SOC; sensu Gifford and Roderick, 2003)
(Figs. 1b, 2b and d). Cumulative soil mass was used because
measured SOC stock in small fixed-depth increments (as was
required in this study) may not be directly comparable across
LUC transitions, due to potential variation in bulk densities
and any compression or expansion introduced through sam-
pling (e.g. Gál et al., 2007). An approach using soil mass as
the independent variable overcomes this issue more gener-
ally because profiles can be directly compared at a particular
reference soil mass (Gifford and Roderick, 2003; Wendt and
Hauser, 2013). Gifford and Roderick (2003) suggest a refer-
ence dry soil mass of 4000 and 12 000 t ha−1 may be used to
approximate sampling to 30 cm and 1 m depth in agricultural
systems, respectively. This is not an issue when examining
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Figure 1. Soil carbon concentration (a, c) and cumulative carbon stock (b, d) of arable (a, b) and SRC willow (c, d) land uses in 10 cm depth
increments to 1 m. Bars represent observed means, squares the standard error of observed means, and open circles the modelled means. Root
mean square error (RMSE) calculated for the depth profile using means of observed and modelled data from the 10 depth increments.

SOC concentration, as these data are not directly influenced
by core volume and apparent bulk density.

There was generally a good fit between observed and mod-
elled data, with all modelled means well within a standard
error of the observed means in each depth increment, and the
majority very close to the actual observed mean (Fig. 1). The
poorest fits appeared to be for SOC concentration around the
plough layer of the arable land use (20–40 cm; Fig. 1a) and
in the upper layers of the SRC willow land use (0–20 cm;
Fig. 1c). The RMSE values for the depth profiles were 0.037,
0.487, 0.028 and 0.929 for arable SOC concentration, arable
SOC stock, SRC willow SOC concentration and SRC willow
SOC stock, respectively.

Individual datapoints for each land use, the confidence en-
velope of the null hypothesis and the modelled profile for
the SRC willow were plotted following BLR (Fig. 2). Where
the modelled line sits outside the confidence envelope it can
be inferred whether there are significant effects of land use
in the soil profile, at either a particular depth or referenced
soil mass. In Fig. 2a, the SOC concentration is significantly

greater under SRC willow compared with arable at 10 and
20 cm, where the modelled line sits to the right of the con-
fidence envelope. The modelled line sits within the confi-
dence envelope between 40 and 100 cm, so there is no sig-
nificant difference (Fig. 2a). Nevertheless, the two depth pro-
files are significantly different overall (P<0.01). The depth
profile of SOC concentration is reflected in the cumulative
SOC stock profile, with the modelled line for SRC willow
moving further from the confidence envelope up to approx-
imately 5000 t ha−1 (Fig. 2b). The difference in cumulative
SOC stock between arable and SRC willow is maintained to
100 cm and, consequently, is significantly different down the
whole soil profile (P<0.01; Fig. 2b).

5 Conclusions

We modelled soil profiles and tested differences in soil char-
acteristics between land use or land management using a
non-parametric approach combining bootstrap sampling and
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Figure 2. Difference in profiles of (a) soil C concentration as a function of sampling depth and (b) cumulative soil C stock as a function of
soil mass. Depth represents values of samples from 10 cm increments. Grey and black symbols represent SRC willow and arable datapoints,
respectively. Dashed lines represent upper and lower bounds of 95 % confidence intervals from bootstrapped (n= 1000) LOESS regressions
of combined arable and SRC willow data; solid lines represent LOESS regression of percent C and cumulative soil C in SRC willow only. If
this line sits outside the confidence interval, it can be inferred that arable and SRC willow are significantly different.

LOESS regression. The development of this approach was
driven by a need for a flexible method which could com-
pare potential non-linear relationships between land uses (or
across land use transitions) and would not be constrained
to specific contexts. While there are several other methods
which can be used to model non-linear relationships in soil
depth profiles, the BLR approach is flexible because it is
data-driven and does not need to meet any distributional as-
sumptions. The confidence envelopes obtained are robust to
miss-specification of the error distribution and provide clear
inspection of significant differences across the full depth pro-
file. There can be issues of model fit when profiles are discon-
tinuous or change abruptly. This is not exclusive to the BLR
approach though and it also affects equal-area spline mod-
els (see Odgers et al., 2012). It has been proposed that the
use of pseudo-horizons may help towards overcoming this
challenge (Malone et al., 2009; Odgers et al., 2012). We ac-
knowledge that in some circumstances the equal area spline
functions are a viable alternative to LOESS regression for
producing a fitted profile. This could, however, easily be in-
corporated into the non-parametric estimation and bootstrap-
ping framework that we present here.

Sampling to depth and increasing the resolution of depth
increments can provide useful profiles or “fingerprints” of
soil properties under different land uses and soil types. In
particular, assessment of SOC to depth, and determining the
response of SOC to land use change (LUC) or land manage-

ment change is essential to understand the sustainability of
different soil use options. This may be particularly important
for land-use transitions to perennial crops, which have deeper
and more permanent rooting systems that may influence the
C balance deeper in the subsoil via priming of decomposi-
tion, C stabilisation or translocation. The BLR approach can
be, however, applied to any soil property of interest giving
the ability to assess land use effects at any point down the
soil profile. Being data-driven and flexible, it is hoped that
further studies of land use and land management, based on
new or existing data, can make use of this approach to exam-
ine differences in soil profiles.

6 Data availability

Example code to demonstrate the BLR approach using these
data is available via doi:10/f3jp5d (Keith et al., 2015).

Author contributions. A. M. Keith and R. L. Rowe conducted sam-
pling and created the data. A. M. Keith and P. Henrys developed the
statistical approach. All authors contributed to preparation of the
manuscript.
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