29 research outputs found

    Molecular sensing with hyperpolarized 129Xe using switchable chemical exchange relaxation transfer

    Get PDF
    A new approach for hyperpolarized 129Xe molecular sensors is explored using paramagnetic relaxation agents that can be deactivated upon chemical or enzymatic reaction with an analyte. Cryptophane encapsulated 129Xe within the vicinity of the paramagnetic center experiences fast relaxation that, through chemical exchange of xenon atoms between cage and solvent pool, causes accelerated hyperpolarized 129Xe signal decay in the dissolved phase. In this work, the relaxivity of GadoliniumIII-DOTA on 129Xe in the solvent was increased eightfold through tethering of the paramagnetic molecule to a cryptophane cage. This potent relaxation agent can be ‘turned off’ specifically for 129Xe through chemical reactions that spatially separate the GdIII centre from the attached cryptophane cage. Unlike 129Xe chemical shift based sensors, the new concept does not require high spectral resolution and may lead to a new generation of responsive contrast agents for molecular MRI

    Developing Mn-doped lead sulfide quantum dots for MRI labels

    Get PDF
    Magnetic interactions of Mn2+ions in lead sulfide (PbS) nanocrystals with protons in water are probed by NMR and MRI. A thin layer of capping molecules enables free solvent diffusion to the nanocrystal surface resulting in a decrease of proton relaxation times. Magnetic resonance imaging of neuronal cell pellets exposed to (PbMn)S at non-toxic concentrations demonstrates their prospects as MRI-labels

    Novel Methods for Microglia Segmentation, Feature Extraction, and Classification

    Get PDF
    © 2017 IEEE. Segmentation and analysis of histological images provides a valuable tool to gain insight into the biology and function of microglial cells in health and disease. Common image segmentation methods are not suitable for inhomogeneous histology image analysis and accurate classification of microglial activation states has remained a challenge. In this paper, we introduce an automated image analysis framework capable of efficiently segmenting microglial cells from histology images and analyzing their morphology. The framework makes use of variational methods and the fast-split Bregman algorithm for image denoising and segmentation, and of multifractal analysis for feature extraction to classify microglia by their activation states. Experiments show that the proposed framework is accurate and scalable to large datasets and provides a useful tool for the study of microglial biology

    In vivo imaging with a cell-permeable porphyrin-based MRI contrast agent

    Get PDF
    Magnetic resonance imaging (MRI) with molecular probes offers the potential to monitor physiological parameters with comparatively high spatial and temporal resolution in living subjects. For detection of intracellular analytes, construction of cell-permeable imaging agents remains a challenge. Here we show that a porphyrin-based MRI molecular imaging agent, Mn-(DPA-C[subscript 2])[subscript 2]-TPPS[subscript 3], effectively penetrates cells and persistently stains living brain tissue in intracranially injected rats. Chromogenicity of the probe permitted direct visualization of its distribution by histology, in addition to MRI. Distribution was concentrated in cell bodies after hippocampal infusion. Mn-(DPA-C2)2-TPPS3 was designed to sense zinc ions, and contrast enhancement was more pronounced in the hippocampus, a zinc-rich brain region, than in the caudate nucleus, which contains relatively little labile Zn[superscript 2+]. Membrane permeability, optical activity, and high relaxivity of porphyrin-based contrast agents offer exceptional functionality for in vivo imaging.National Institutes of Health (U.S.) (grant DP2-OD2441)United States. Dept. of Defense (grant DAMD17-03-1-0413)National Institutes of Health (U.S.) (grant R01-GM065519

    NAD-biosynthetic enzyme NMNAT1 reduces early behavioral impairment in the htau mouse model of tauopathy

    Get PDF
    NAD metabolism and the NAD biosynthetic enzymes nicotinamide nucleotide adenylyltransferases (NMNATs) are thought to play a key neuroprotective role in tauopathies, including Alzheimer’s disease. Here, we investigated whether modulating the expression of the NMNAT nuclear isoform NMNAT1, which is important for neuronal maintenance, influences the development of behavioral and neuropathological abnormalities in htau mice, which express non-mutant human tau isoforms and represent a model of tauopathy relevant to Alzheimer’s disease. Prior to the development of cognitive symptoms, htau mice exhibit tau hyperphosphorylation associated with a selective deficit in food burrowing, a behavior reminiscent to activities of daily living which are impaired early in Alzheimer’s disease. We crossed htau mice with Nmnat1 transgenic and knockout mice and tested the resulting offspring until the age of 6 months. We show that overexpression of NMNAT1 ameliorates the early deficit in food burrowing characteristic of htau mice. At 6 months of age, htau mice did not show neurodegenerative changes in both the cortex and hippocampus, and these were not induced by downregulating NMNAT1 levels. Modulating NMNAT1 levels produced a corresponding effect on NMNAT enzymatic activity but did not alter NAD levels in htau mice. Although changes in local NAD levels and subsequent modulation of NAD-dependent enzymes cannot be ruled out, this suggests that the effects seen on behavior may be due to changes in tau phosphorylation. Our results suggest that increasing NMNAT1 levels can slow the progression of symptoms and neuropathological features of tauopathy, but the underlying mechanisms remain to be established

    The Way Forward

    No full text
    Current trends in energy, like the increasing need to integrate renewable energy resources, the evolution of future smart grids and distributed generation, are likely to dramatically increase the dependence of the electricity infrastructure on IC. This opens new possibilities but also creates new risks, both inherent risks and due to new opportunities for malicious risks. This book has highlighted these challenges from different points of view. The aim of this final chapter is to demonstrate how they together show a way forward to ensuring a secure and high quality supply of electricity that meets future demands.JRC.DG.G.6-Security technology assessmen

    Energy Security - A European Perspective

    No full text
    In spite of its critical role, energy security lacks a universally agreed definition, which given its complexity may well just be unrealistic. The concept is still used in a wide range of reports and documents, often without discussion of its dimensions and their significance. As a consequence, the literature is characterized by an almost overwhelming focus on securing supplies of primary energy sources and geopolitics. Clearly, views on energy security also differ widely between nations. The European Union’s approach towards energy security is presented in this paper; it can be derived from several policy legislations and proposals that followed the European Commission’s 2000 Green Paper “Towards a European Strategy for the Security of Energy Supply”.JRC.F.3-Energy securit

    Dynamic imaging with MRI contrast agents: quantitative considerations

    No full text
    Time-resolved MRI has had enormous impact in cognitive science and may become a significant tool in basic biological research with the application of new molecular imaging agents. In this paper, we examine the temporal characteristics of MRI contrast agents that could be used in dynamic studies. We consider “smart” T1 contrast agents, T2 agents based on reversible aggregation of superparamagnetic nanoparticles and sensors that produce changes in saturation transfer effects (chemical exchange saturation transfer, CEST). We discuss response properties of several agents with reference to available experimental data, and we develop a new theoretical model that predicts the response rates and relaxivity changes of aggregation-based sensors. We also perform calculations to define the extent to which constraints on temporal resolution are imposed by the imaging methods themselves. Our analysis confirms that some small T1 agents may be compatible with MRI temporal resolution on the order of 100 ms. Nanoparticle aggregation T2 sensors are applicable at much lower concentrations, but are likely to respond on a single second or slower timescale. CEST agents work at high concentrations and temporal resolutions of 1–10 s, limited by a requirement for long presaturation periods in the MRI pulse sequence

    Dynamic imaging with MRI contrast agents: quantitative considerations. Magn Reson Imaging 24

    No full text
    Abstract Time-resolved MRI has had enormous impact in cognitive science and may become a significant tool in basic biological research with the application of new molecular imaging agents. In this paper, we examine the temporal characteristics of MRI contrast agents that could be used in dynamic studies. We consider bsmartQ T1 contrast agents, T2 agents based on reversible aggregation of superparamagnetic nanoparticles and sensors that produce changes in saturation transfer effects (chemical exchange saturation transfer, CEST). We discuss response properties of several agents with reference to available experimental data, and we develop a new theoretical model that predicts the response rates and relaxivity changes of aggregation-based sensors. We also perform calculations to define the extent to which constraints on temporal resolution are imposed by the imaging methods themselves. Our analysis confirms that some small T1 agents may be compatible with MRI temporal resolution on the order of 100 ms. Nanoparticle aggregation T2 sensors are applicable at much lower concentrations, but are likely to respond on a single second or slower timescale. CEST agents work at high concentrations and temporal resolutions of 1-10 s, limited by a requirement for long presaturation periods in the MRI pulse sequence.
    corecore