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Molecular Sensing with Hyperpolarized '**Xe using Switchable
Chemical Exchange Relaxation Transfer.

Francesco Zamberlan,*™ Clémentine Lesbats, ™ Nicola J. Rogers,™ James L.
Pavlovskaya,” Neil R. Thomas,*® Henryk Faas,*™ and Thomas Meersmann*

Abstract: A new approach for hyperpolarized '**Xe molecular
sensors is explored using paramagnetic relaxation agents that can
be deactivated upon chemical or enzymatic reaction with an analyte.
Cryptophane encapsulated '?°Xe within the vicinity of the
paramagnetic center experiences fast relaxation that, through
chemical exchange of xenon atoms between cage and solvent pool,
causes accelerated hyperpolarized '*Xe signal decay in the

dissolved phase. In this work, the relaxivity of Gadolinium"-DOTA

on "°Xe in the solvent was increased eightfold through tethering of
the paramagnetic molecule to a cryptophane cage. This potent
relaxation agent can be ‘turned off specifically for **Xe through
chemical reactions that spatially separate the Gd" centre from the
attached cryptophane cage. Unlike '*Xe chemical shift based
sensors, the new concept does not require high spectral resolution
and may lead to a new generation of responsive contrast agents for

molecular MRI.

Molecular imaging enables the in vivo detection of the sp
distribution of specific target molecules that serve as ‘bioma
for organ physiology. Imaging of biomarkers allows for theearly
detection of disease, for better monitoring of treatment,
drug development. Among the strategies to enable
MRI™ the hyperpolarized (hp) '**Xe biosens
pioneered by Pines, Wemmer, and co-workers®? i
candidate due to xenon’s non-toxicity, the si
corresponding NMR spectra, and its solubility j
and tissue.! Hp '*Xe biosensors utilize an encapsu
such as cryptophane cages, that can reversibly bind Xe
with fast rates of exchange. The large chemical shift range
2Xe leads to a distinguishable signal separation between
encapsulated xenon atoms in the hydrgphobic cavity and x
in the solvent (not visible in Fig. 1b line broadenin

Fig. S2 in Supporting Information).
can be functionalized with suitable bioactiv
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Figure 1. A) Hp "*Xe NMR spectrum of a 1:1 v/v water/acetonitrile (H,O/ACN)
solution containing 0.33 mM GdDOTA. The hp "*°Xe signal intensity of the
dissolved phase (189.6 ppm) - and through exchange, the intensity of the gas
phase (0 ppm) - is only moderately affected by the relaxation agent because
the exposure time of the xenon atoms to the paramagnetic center is very
limited. B) Hp "**Xe NMR spectrum of 0.035 mM cryptophane-A tethered to
GdDOTA in H,O/ACN solution. Encapsulated *°Xe is not detected because of
severe line broadening. This molecule serves as a strong relaxation agent,
specifically for '**Xe, due to prolonged duration of *Xe encapsulation in the
close vicinity to the paramagnetic relaxation center. The effect of fast
relaxation (or depolarization) of encapsulated hp 2%e is transferred via
chemical exchange to the dissolved phase (189.3 ppm) where an accelerated
decay of the "**Xe ) signal is observed.



Hyperpolarized ' Xe Chemical Exchange Saturation
Transfer (HyperCEST)? improves the hp '**Xe biosensor
detection limit by orders of magnitude.”! HyperCEST is achieved
by selective irradiation (i.e. saturation) at the NMR frequency of
the encapsulated **Xe signal that depolarizes its hp spin state.
Chemical exchange continuously transfers depolarized '*°Xe
from the cage to the dissolved phase and accelerates the decay
of the dissolved phase signal.

Molecular sensing with HyperCEST usually relies on the
small '®*Xe chemical shift differences created by biosensor —
biomarker interactions that are typically in the 2-3 ppm range,
with exceptional cases up to 8 ppm.®! Although hp '*Xe
biosensors enable a host of biomolecular NMR applications,?
5" including in vitro MRI for cell tracking ® and in vivo organ
uptake of functionalized nanoparticles,” in vivo MRI usage in
complex organisms such as vertebrates is generally limited by
the achievable low spectral resolution. This is a limitation
wherever chemical shift is required to distinguish between a
binding (or cleaving) event and unspecific interaction (i.e.
typically non-reacted sensors that are still present to a significant
extent). A very promising advancement has been reported very
recently that does not require high spectral resolution because
the unspecific background was very small. HyperCEST enabled
imaging of cell-surface glycans at nanomolar concentrations in
live-cell bioreactors®™. However, wherever the biosensor
molecules interacting with biomarker molecules need to be
distinguished from a significant amount of biosensors that h
not been bound, cleaved, or otherwise reacted biom
specifically, imaging will likely have to cope with small chemical
shift differences between the two biosensor moieties.

This proof-of-concept study presents a different
for hp "°Xe biosensors, sketched in Fig. 1b, using p
relaxation instead of the chemical shift. Paramagn
causes rapid decay of the hp signal. Para
centers are therefore usually avoided for hp M
for the generation of negative contrast through short
or T,* times."” Note that upon submission of this manu
the authors learned that a paramagnetic relaxation base
hp'?*Xe biosensor concept has also been reported by We
Pines, and co-workers!'". The new hp
in this work utilizes ‘switchable’
Chemical sensing will be based on ¢
about by target molecules that ‘deactiv
relaxation agent. Hp "*Xe will
time has passed to allow fq

magnitude of the relaxi
concept feasibility.

Results
be an acceptable solvent
d Gd" but also for the

], to determine the relaxivity of the
ity of GADOTA for '*Xe(so Was
determined as Ri/[Rx] = O.OM5 s'mM’ (see Fig. 3). The
approximately 150 fold reduced relaxivity of gadolinium for
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129X e(so)y compared to that for H,O protons (7.66 s'mM™ — see
Fig. 3) is caused in part by xenon’s lower gyromagnetic ratio y
that contributes to an approxima 3 fold reduced relaxivity
due to they? dependence of para ic relaxation."1¥ |n
addition, H,O protons experience furthe
because of direct coordination of wat
DOTA complexes."
A 1 mM GdDOTA solu
relaxation, with T4 = 19 s,
12%Xe relaxation behay
times for hp '*Xe,
7.9 s, depending
blood, rapid excha
relaxation times up

om approximately 2.7 to
M In lung tissue and
e prolongs the **Xe(aq

OTA is tethered to the
ivity for **Xe(o increased
o R/[Rx] = 0416 s'mM’. The large
is likely caused by fast relaxation of
se proximity to the paramagnetic
GdDOTA. Para ation follows an r® dependence,!"”
where r is the distance between the nuclear spin (here, of
e capsulattidig)(e) and the paramagnetic center. Chemical

een Xe in cages and solution transfers the
ation eNect and leads to accelerated R rates for the
Ived phase '**Xe). The relatively small '*Xeso chemical
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Figure 2. Relaxation rates, Ry, of dissolved phase *Xe in 1:1 viv
H,O/ACN solution as a function of the concentration of various agents, [Rx], at
293 K and 9.4 T field strength. Note that CrA-DOTA + Gd** (red data points
and line) shows the relaxation data obtained more than 24 h after adding HCI
to the solution with CrA-GdDOTA, causing Gd** to be expelled from the
molecule. Data point (i) shows effect of CrA-GdDOTA approximately 1 h after
addition of HCI. (i) After 24 h the reaction to CrA-DOTA + Gd" ., was 86 %
complete as determined by HPLC (see supporting material). (iii) Reaction is
96% complete after 96 h. Data points (i)-(iii) (i.e. crosses) are averages from
three measurements — all other data are from single measurements.

Relaxivity values are reported in Fig. 3.

The relaxivity of CrA-GdDOTA for 'H was very similar to that
of GADOTA. This was expected from Solomon-Bloembergen-
Morgan theory®! since the addition of the CrA group should
have little effect on the number (q) of water molecules



coordinated to Gd" or their residence time. Furthermore, the
rotational correlation time associated with the relatively small
CrA-GdDOTA molecule is too short to significantly alter the
relaxation behavior.

A) GdDOTA R/IRx]for °Xe:  0.0515 +0.0014 s'mM”'
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Figure 3. Relaxivity, R4/[Rx], of various substances, Rx, for dissol
phase '*Xe o and 'H (of H,0) at 293 K and 9.4 T in H,O/ACN (1:

sufficiently short to affect the
rCEST, this effect does not
saturation to accomplish

depolarization occurs as the
ined effect of relaxation in the bound
e) followed by chemical exchange
the dissolved phase signal. To
deactivate the depolar ke relaxation agent will need to
be ‘turned off through selective chemical or biochemical

require radiofrequ
depolarization. Ra
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cleavage of the paramagnetic center from the encapsulating
cage.

To demonstrate the deactivati
prove that accelerated '**Xe relaxa
the close vicinity of the paramagnetic m
12%e, HCI (37% viv) was added to pr

cept, but also to further
indeed caused by
encapsulated
and leach
to form CrA-DOTA +
drop in the relaxivity for
Fig. 3C. This value is
A in Fig. 3A, most
9% ey With the
imilarly effecting the 'H
riment the relaxivity of
g 3D, pH = 7) was found
to the value in Fig. 3C at

likely because of
unchelated param
relaxation in Fig.
GdCl; for "*Xe in

the time behavior (i — iii) of the DOTA
ociated change in relaxivity that took

n. This time behavior was verified
through HP spectrometry (see Supporting
Information). It demonstrates that the change in relaxivity was
indeed causegy by the separation of the Gd" center from the

Ige and not by a pH dependence of the xenon in-
rate with the cryptophane cage, in agreement with
us literature studying pH effects."®
nclusions. The relaxation data generated in this study
ates a dramatic increase in relaxivity of a GdADOTA for
complex is tethered to a cryptophane cage. This
increase e consequence of the prolonged duration of cage
bound 'X& in close vicinity to the paramagnetic metal center.
The strong relaxation experienced by cage bound xenon is
transferred through chemical exchange to the solvent phase
258 The dissolved phase '*Xe signal decays at a rate that is
erage of the relaxation rate in the cage and the relaxation
in the solvent, scaled by the duration that the xenon atoms
main in the two respective phases.

As this hp '°Xe chemical exchange relaxation transfer
mechanism can be disrupted by the separation of CrA cage from
the paramagnetic metal, a specifically designed responsive
contrast agent can give rise to a new switchable '*°Xe
depolarization based biosensor concept. Although this method
may lack some of the intrinsic versatility of the HyperCEST
concept, the presented responsive MRI contrast agent concept
would not require high spectral resolution. In addition, switchable
relaxation does not entail high power radiofrequency saturation
that can be problematic for in vivo studies due to heat adsorption
in tissue. Furthermore, the relaxation agent deactivation is '**Xe
specific and does not affect proton T relaxation (compare Fig. 3,
A and B) and standard 'H T; relaxation maps should allow to
probe for the presence of biosensors independent of the
activation state. This should allow for differentiation of regions
with higher concentration of deactivated biosensor from those
with lower concentration of still active biosensor. Although both
regions may result in similar '®Xe relaxation rates, the very
different 'H relaxation behavior would enable correct
interpretation.

The design of future responsive hp '**Xe depolarization
agents as potential biosensors deserves some consideration: In
analogy to the r® dependence utilized in intramolecular Férster




resonance energy transfer (FRET),'® the r® dependence of
paramagnetic relaxation on distance r between the cage and the
paramagnetic metal center could be exploited for sensors that
operate through conformational changes or through a cleavable
linker between the two groups. Enzymatic cleavage of the linker
between paramagnetic GADOTA and a 'F containing reporter
group was previously utilized to deactivate paramagnetic T,
relaxation, thereby reducing line broadening in thermally
polarized '°F NMR." Furthermore, enzymatic cleavage has
been detected through a chemical shift based hp '*Xe
biosensor."®  Similarly, cleavable linkers between a
paramagnetic group and cryptophane cage may provide a
usable responsive hp '®Xe relaxation agents. The molecular
design of the hp "*Xe depolarization based biosensors can be
advanced through an increase in the number of captured xenon
atoms, for example through the usage of multiple cryptophane
cages or through capsides!™ that would also increase rotational
correlation times. Both effects will likely increase the relaxivity of
the activated state but not of the deactivated state. Finally, Gd"
can be substituted by other paramagnetic groups with stronger
relaxation properties such as Mn(Il) nanoparticles.?”

Experimental Section

As described in detail in the Supporting Information, the model
CrA-GdDOTA was synthesized from a DOTA chelator, modified with a
short linker, and cryptophanol. Cryptophanol was synthegi
previously reported by Bertault and co-workers,"™ while the D,
was simply obtained by reacting an appropriately protected
short bisamide linker with alpha-bromoacetyl as
cryptophanol was then reacted with the alpha-bromoace
an ether. After deprotection of the DOTA carboxylic
cation was successfully chelated, yielding the desir
GdDOTA.

All NMR relaxation measurements were obtained at a temperature of 29
K at 9.4 T field strength. Hp '*°Xe was produced through spin exchgnge
optical pumping (SEOP) using a customgbuilt instrument desc

was measured through a sequ
experiments.?? A standar
obtain the 'H T, relaxatio

16 constant flip 'angle (12°)
sequence was used to
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