1,017 research outputs found

    Spectrum of Neutral Helium in Strong Magnetic Fields

    Get PDF
    We present extensive and accurate calculations for the excited state spectrum of spin-polarized neutral helium in a range of magnetic field strengths up to 101210^{12} G. Of considerable interest to models of magnetic white dwarf stellar atmospheres, we also present results for the dipole strengths of the low lying transitions among these states. Our methods rely on a systematically saturated basis set approach to solving the Hartree--Fock self-consistent field equations, combined with an ``exact'' stochastic method to estimate the residual basis set truncation error and electron correlation effects. We also discuss the applicability of the adiabatic approximation to strongly magnetized multi-electron atoms.Comment: 19 pages, 7 figures, 10 table

    "TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations

    Get PDF
    The classical Kuiper belt contains objects both from a low-inclination, presumably primordial, distribution and from a high-inclination dynamically excited population. Based on a sample of classical TNOs with observations at thermal wavelengths we determine radiometric sizes, geometric albedos and thermal beaming factors as well as study sample properties of dynamically hot and cold classicals. Observations near the thermal peak of TNOs using infra-red space telescopes are combined with optical magnitudes using the radiometric technique with near-Earth asteroid thermal model (NEATM). We have determined three-band flux densities from Herschel/PACS observations at 70.0, 100.0 and 160.0 μ\mum and Spitzer/MIPS at 23.68 and 71.42 μ\mum when available. We have analysed 18 classical TNOs with previously unpublished data and re-analysed previously published targets with updated data reduction to determine their sizes and geometric albedos as well as beaming factors when data quality allows. We have combined these samples with classical TNOs with radiometric results in the literature for the analysis of sample properties of a total of 44 objects. We find a median geometric albedo for cold classical TNOs of 0.14 and for dynamically hot classical TNOs, excluding the Haumea family and dwarf planets, 0.085. We have determined the bulk densities of Borasisi-Pabu (2.1 g/cm^3), Varda-Ilmare (1.25 g/cm^3) and 2001 QC298 (1.14 g/cm^3) as well as updated previous density estimates of four targets. We have determined the slope parameter of the debiased cumulative size distribution of dynamically hot classical TNOs as q=2.3 +- 0.1 in the diameter range 100<D<500 km. For dynamically cold classical TNOs we determine q=5.1 +- 1.1 in the diameter range 160<D<280 km as the cold classical TNOs have a smaller maximum size.Comment: 22 pages, 7 figures Accepted to be published in Astronomy and Astrophysic

    "TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects

    Full text link
    Trans-Neptunian objects (TNO) represent the leftovers of the formation of the Solar System. Their physical properties provide constraints to the models of formation and evolution of the various dynamical classes of objects in the outer Solar System. Based on a sample of 19 classical TNOs we determine radiometric sizes, geometric albedos and beaming parameters. Our sample is composed of both dynamically hot and cold classicals. We study the correlations of diameter and albedo of these two subsamples with each other and with orbital parameters, spectral slopes and colors. We have done three-band photometric observations with Herschel/PACS and we use a consistent method for data reduction and aperture photometry of this sample to obtain monochromatic flux densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS flux densities at 23.68 and 71.42 \mu m when available, and we present new Spitzer flux densities of eight targets. We derive diameters and albedos with the near-Earth asteroid thermal model (NEATM). As auxiliary data we use reexamined absolute visual magnitudes from the literature and data bases, part of which have been obtained by ground based programs in support of our Herschel key program. We have determined for the first time radiometric sizes and albedos of eight classical TNOs, and refined previous size and albedo estimates or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347 Salacia indicate that they are among the 10 largest TNOs known. Our new results confirm the recent findings that there are very diverse albedos among the classical TNOs and that cold classicals possess a high average albedo (0.17 +/- 0.04). Diameters of classical TNOs strongly correlate with orbital inclination in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion

    Full text link
    We present relations between X-ray luminosity and velocity dispersion (L-sigma), X-ray luminosity and gas mass (L-Mgas), and cluster radius and velocity dispersion (r500-sigma) for 62 galaxy clusters in the HIFLUGCS, an X-ray flux-limited sample minimizing bias toward any cluster morphology. Our analysis in total is based on ~1.3Ms of clean X-ray XMM-Newton data and 13439 cluster member galaxies with redshifts. Cool cores are among the major contributors to the scatter in the L-sigma relation. When the cool-core-corrected X-ray luminosity is used the intrinsic scatter decreases to 0.27 dex. Even after the X-ray luminosity is corrected for the cool core, the scatter caused by the presence of cool cores dominates for the low-mass systems. The scatter caused by the non-cool-core clusters does not strongly depend on the mass range, and becomes dominant in the high-mass regime. The observed L-sigma relation agrees with the self-similar prediction, matches that of a simulated sample with AGN feedback disregarding six clusters with <45 cluster members with spectroscopic redshifts, and shows a common trend of increasing scatter toward the low-mass end, i.e., systems with sigma<500km/s. A comparison of observations with simulations indicates an AGN-feedback-driven impact in the low-mass regime. The best fits to the LMgasL-M_{\rm gas} relations for the disturbed clusters and undisturbed clusters in the observational sample closely match those of the simulated samples with and without AGN feedback, respectively. This suggests that one main cause of the scatter is AGN activity providing feedback in different phases, e.g., during a feedback cycle. The slope and scatter in the observed r500-sigma relation is similar to that of the simulated sample with AGN feedback except for a small offset but still within the scatter.Comment: 45 pages, 28 figures, A&A proof-version, high-resolution figures in Appendix F can be found in the electronic version on the A&A we

    TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations

    Full text link
    We present Herschel PACS photometry of 18 Plutinos and determine sizes and albedos for these objects using thermal modeling. We analyze our results for correlations, draw conclusions on the Plutino size distribution, and compare to earlier results. Flux densities are derived from PACS mini scan-maps using specialized data reduction and photometry methods. In order to improve the quality of our results, we combine our PACS data with existing Spitzer MIPS data where possible, and refine existing absolute magnitudes for the targets. The physical characterization of our sample is done using a thermal model. Uncertainties of the physical parameters are derived using customized Monte Carlo methods. The correlation analysis is performed using a bootstrap Spearman rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km and geometric albedos to vary between 0.04 and 0.28. The average albedo of the sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs, Jupiter Family comets and other Trans-Neptunian Objects. We were able to calibrate the Plutino size scale for the first time and find the cumulative Plutino size distribution to be best fit using a cumulative power law with q = 2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On the basis of a modified Spearman rank analysis technique our Plutino sample appears to be biased with respect to object size but unbiased with respect to albedo. Furthermore, we find biases based on geometrical aspects and color in our sample. There is qualitative evidence that icy Plutinos have higher albedos than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&

    A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress.

    Get PDF
    Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used 14C-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned 14C to maintain sugar levels under stress, primarily by reducing 14C into the storage compounds in the source leaf, and decreasing 14C into the pools used for growth processes in the roots. Salinity and cold increased 14C-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation

    Structure of crystalline and amorphous materials in the NASICON system Na<sub>1+x</sub>Al<sub>x</sub>Ge<sub>2- x</sub>(PO<sub>4</sub>)<sub>3</sub>

    Get PDF
    The structure of crystalline and amorphous materials in the sodium (Na) super-ionic conductor system Na1+xAlxGe2-x(PO4)3 with x = 0, 0.4, and 0.8 was investigated by combining (i) neutron and x-ray powder diffraction and pair-distribution function analysis with (ii) 27Al and 31P magic angle spinning (MAS) and 31P/23Na double-resonance nuclear magnetic resonance (NMR) spectroscopy. A Rietveld analysis of the powder diffraction patterns shows that the x = 0 and x = 0.4 compositions crystallize into space group-type R3¯, whereas the x = 0.8 composition crystallizes into space group-type R3¯c. For the as-prepared glass, the pair-distribution functions and 27Al MAS NMR spectra show the formation of sub-octahedral Ge and Al centered units, which leads to the creation of non-bridging oxygen (NBO) atoms. The influence of these atoms on the ion mobility is discussed. When the as-prepared glass is relaxed by thermal annealing, there is an increase in the Ge and Al coordination numbers that leads to a decrease in the fraction of NBO atoms. A model is proposed for the x = 0 glass in which super-structural units containing octahedral Ge(6) and tetrahedral P(3) motifs are embedded in a matrix of tetrahedral Ge(4) units, where superscripts denote the number of bridging oxygen atoms. The super-structural units can grow in size by a reaction in which NBO atoms on the P(3) motifs are used to convert Ge(4) to Ge(6) units. The resultant P(4) motifs thereby provide the nucleation sites for crystal growth via a homogeneous nucleation mechanism. </p
    corecore