5,851 research outputs found

    3D Temperature Mapping of Solar Photospheric Fine Structure Using Ca II H Filtergrams

    Full text link
    Context. The wings of the Ca II H and K lines provide excellent photospheric temperature diagnostics. At the Swedish 1-meter Solar Telescope the blue wing of Ca II H is scanned with a narrowband interference filter mounted on a rotation stage. This provides up to 0"10 spatial resolution filtergrams at high cadence that are concurrent with other diagnostics at longer wavelengths. Aims. The aim is to develop observational techniques that provide the photospheric temperature stratification at the highest spatial resolution possible and use those to compare simulations and observations at different heights. Methods. We use filtergrams in the Ca II H blue wing obtained with a tiltable interference filter at the SST. Synthetic observations are produced from 3D HD and 3D MHD numerical simulations and degraded to match the observations. The temperature structure obtained from applying the method to the synthetic data is compared with the known structure in the simulated atmospheres and with observations of an active region. Cross-correlation techniques using restored non-simultaneous continuum images are used to reduce high-altitude, small-scale seeing signal introduced from the non-simultaneity of the frames when differentiating data. Results. Temperature extraction using high resolution filtergrams in the Ca II H blue wing works reasonably well when tested with simulated 3D atmospheres. The cross-correlation technique successfully compensates the problem of small-scale seeing differences and provides a measure of the spurious signal from this source in differentiated data. Synthesized data from the simulated atmospheres (including pores) match well the observations morphologically at different observed heights and in vertical temperature gradients.Comment: Accepted the 10/10/2012 for publication in Astronomy & Astrophysics in Section 9, The Sun. Published the 03/12/2012 v1 to v2: changed submission metadata v2 to v3: small changes to match published versio

    Dynamics of internetwork chromospheric fibrils: Basic properties and MHD kink waves

    Get PDF
    Using the spectroscopic imaging capabilities of the Swedish Solar Telescope, we aim to provide the first investigation on the nature and dynamics of elongated absorption features (fibrils) observed in Hα\alpha in the internetwork. We observe and identify a number of internetwork fibrils, which form away from the kilogauss, network magnetic flux, and we provide a synoptic view on their behaviour. The internetwork fibrils are found to support wave-like behaviour, which we interpret as Magnetohydrodynamic (MHD) kink waves. The properties of these waves, that is, amplitude, period, and propagation speed, are measured from time-distance diagrams and we attempt to exploit them via magneto-seismology in order to probe the variation of plasma properties along the wave-guides. We found that the Internetwork (IN) fibrils appear, disappear, and re-appear on timescales of tens of minutes, suggesting that they are subject to repeated heating. No clear photospheric footpoints for the fibrils are found in photospheric magnetograms or Hα\alpha wing images. However, we suggest that they are magnetised features as the majority of them show evidence of supporting propagating MHD kink waves, with a modal period of 120120~s. Additionally, one IN fibril is seen to support a flow directed along its elongated axis, suggesting a guiding field. The wave motions are found to propagate at speeds significantly greater than estimates for typical chromospheric sound speeds. Through their interpretation as kink waves, the measured speeds provide an estimate for local average Alfv\'en speeds. Furthermore, the amplitudes of the waves are also found to vary as a function of distance along the fibrils, which can be interpreted as evidence of stratification of the plasma in the neighbourhood of the IN fibril.Comment: Accepted Astronomy & Astrophysic

    Chromospheric Inversions of a Micro-flaring Region

    Get PDF
    We use spectropolarimetric observations of the Ca II 8542~\AA\ line, taken from the Swedish 1-m Solar Telescope (SST), in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of ∼\sim1000~K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5 - 10 km s−1^{-1}. This heating also extends along a nearby chromospheric fibril, co-spatial to 10 - 15 km s−1^{-1} down-flows. Strong magnetic flux cancellation is also apparent in one of the footpoints, concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb (EB), though placed slightly higher in the atmosphere than is typically observed.Comment: 9 pages, 9 figures, accepted in ApJ. Movies are stored here: https://star.pst.qub.ac.uk/webdav/public/areid/Microflare

    The effects of transients on photospheric and chromospheric power distributions

    Get PDF
    We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, Hα\alpha line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as "power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can strongly influence the power-maps. The short and finite lifetime of these events strongly affects all powermaps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously, can have a dominant effect on the formation of the power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect in the power suppression around 3 minutes and wave interaction may play a key role here. Our high cadence observations reveal that flows, waves and shocks manifest in presence of magnetic fields to form a non-linear magnetohydrodynamic system.Comment: 11 pages, 11 Figures, 4 movies (will be available online in ApJ). ApJ (accepted

    Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices

    Full text link
    We report an experimental study of miniband magnetoconduction in semiconducting InAs/GaSb superlattices. For samples with miniband widths below the longitudinal optical phonon energy we identify a new superlattice magnetophonon resonance (SLMPR) caused by resonant scattering of electrons across the mini-Brillouin zone. This new resonant feature arises directly from the drift velocity characteristics of the superlattice dispersion and total magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Opposite polarity field with convective downflow and its relation to magnetic spines in a sunspot penumbra

    Full text link
    We discuss NICOLE inversions of Fe I 630.15 nm and 630.25 nm Stokes spectra from a sunspot penumbra recorded with the CRISP imaging spectropolarimeter on the Swedish 1-m Solar Telescope at a spatial resolution close to 0.15". We report on narrow radially extended lanes of opposite polarity field, located at the boundaries between areas of relatively horizontal magnetic field (the intra-spines) and much more vertical field (the spines). These lanes harbor convective downflows of about 1 km/s. The locations of these downflows close to the spines agree with predictions from the convective gap model (the "gappy penumbra") proposed six years ago, and more recent 3D MHD simulations. We also confirm the existence of strong convective flows throughout the entire penumbra, showing the expected correlation between temperature and vertical velocity, and having vertical RMS velocities of about 1.2 km/s.Comment: Accepted for publication in A&A (06-March-2013). Minor corrections made in this version

    Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

    Full text link
    Discriminative Correlation Filters (DCF) have demonstrated excellent performance for visual object tracking. The key to their success is the ability to efficiently exploit available negative data by including all shifted versions of a training sample. However, the underlying DCF formulation is restricted to single-resolution feature maps, significantly limiting its potential. In this paper, we go beyond the conventional DCF framework and introduce a novel formulation for training continuous convolution filters. We employ an implicit interpolation model to pose the learning problem in the continuous spatial domain. Our proposed formulation enables efficient integration of multi-resolution deep feature maps, leading to superior results on three object tracking benchmarks: OTB-2015 (+5.1% in mean OP), Temple-Color (+4.6% in mean OP), and VOT2015 (20% relative reduction in failure rate). Additionally, our approach is capable of sub-pixel localization, crucial for the task of accurate feature point tracking. We also demonstrate the effectiveness of our learning formulation in extensive feature point tracking experiments. Code and supplementary material are available at http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/index.html.Comment: Accepted at ECCV 201

    Stable Umbral Chromospheric Structures

    Get PDF
    Aims. To understand the morphology of the chromosphere in sunspot umbra. We investigate if the horizontal structures observed in the spectral core of the Ca II H line are ephemeral visuals caused by the shock dynamics of more stable structures, and examine their relationship with observables in the H-alpha line. Methods. Filtergrams in the core of the Ca II H and H-alpha lines as observed with the Swedish 1-m Solar Telescope are employed. We utilise a technique that creates composite images and tracks the flash propagation horizontally. Results. We find 0"15 wide horizontal structures, in all of the three target sunspots, for every flash where the seeing was moderate to good. Discrete dark structures are identified that are stable for at least two umbral flashes, as well as systems of structures that live for up to 24 minutes. We find cases of extremely extended structures with similar stability, with one such structure showing an extent of 5". Some of these structures have a correspondence in H-alpha but we were unable to find a one to one correspondence for every occurrence. If the dark streaks are formed at the same heights as umbral flashes then there are systems of structures with strong departures from the vertical for all three analysed sunspots. Conclusions. Long-lived Ca II H filamentary horizontal structures are a common and likely ever-present feature in the umbra of sunspots. If the magnetic field in the chromosphere of the umbra is indeed aligned with the structures, then the present theoretical understanding of the typical umbra needs to be revisited.Comment: Accepted to Astronomy and Astrophysics. Online material (Fig3.mov and Fig4.mov) will be available at A&

    Automata, Groups, Limit Spaces, and Tilings

    Get PDF
    We explore the connections between automata, groups, limit spaces of self-similar actions, and tilings. In particular, we show how a group acting ``nicely'' on a tree gives rise to a self-covering of a topological groupoid, and how the group can be reconstructed from the groupoid and its covering. The connection is via finite-state automata. These define decomposition rules, or self-similar tilings, on leaves of the solenoid associated with the covering.Comment: to appear in J. Algebr
    • …
    corecore