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Abstract

We explore the connections between automata, groups, limit spaces of self-similar actions, and
tilings. In particular, we show how a group acting “nicely” on a tree gives rise to a self-covering of
a topological groupoid, and how the group can be reconstructed from the groupoid and its covering.
The connection is via finite-state automata. These define decomposition rules, or self-similar tilings,
on leaves of the solenoid associated with the covering.
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1. Introduction

Groups generated by automata appeared in the early 60’s, in particular through the work
of Alešin [1]; important examples were studied later by Grigorchuk [6] and Gupta and
Sidki [9]. A general theory of such groups has only recently started to emerge.

The situation changed considerably when the last author introduced the notion of “limit
space” of a contracting group generated by automata. This provided a bridge with dynam-
ical systems, by associating with such a group a space with covering map, and vice versa.

This paper explores the degree to which these two notions are equivalent. It turns out
that the construction of a contracting group from a limit space, and of a limit space from a
contracting group, are inverse to each other if the limit space is considered as a topological
orbispace (Theorem 6.7).

The orbispaces considered in this paper are quite complicated: for example, they have
uncountable fundamental group; the set of points with nontrivial isotropy groups is dense,
etc. Other constructions would yield “nicer” limit orbispaces, e.g., such that the points with
nontrivial isotropy groups form a closed nowhere dense set; but at the cost of making less
transparent the similarity between self-coverings of orbispaces and self-similar groups.

This paper also attempts to present in a uniform way automata, groups, limit spaces,
and the tilings that they carry. Many of the results are not new, although wherever possible
they are stated in greater generality.

The main connections, starting from an automaton (Π ), or a topological space with a
branched covering (X), are as shown in Fig. 1. The connecting constructions are a limit
space (L), a solenoid (S) and a discrete group (Γ ). The commutativity of the diagram at †
is proven in Theorem 6.7, and that at ‡ is proven in Theorem 6.1.
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2. Definitions

We introduce in this section the main definitions used in the text. Most of them already
appeared in [2] with examples and illustrations.

Our convention for N is that it does not contain 0.

2.1. Automata

An automaton Π is a pair A,Q of sets called respectively alphabet and states, with
maps σ :A ×Q→ A and τ :A ×Q→ Q called respectively the output and transition
functions.

A graph is a pair V,E of sets called respectively vertices and edges, with maps
s, t :E→ V called respectively the source and target maps.1

The graph G(Π) of an automaton Π is the graph with vertex set Q, containing for all
q ∈Q and all a ∈A an edge from q to τ(a, q), labeled a/σ(a, q).

The dual of Π is the automaton Π∗ with alphabet Q, states A, output σ ∗(q, a) =
τ(a, q) and transition τ ∗(q, a)= σ(a, q).

Let Π and Π ′ be two automata on the same alphabet A. The product of Π and Π ′
is the automaton Π ′′ = Π ∗Π ′ with alphabet A, states Q×Q′, output σ ′′(a, (q, q ′)) =
σ ′(σ (a, q), q ′) and transition τ ′′(a, (q, q ′))= (τ (a, q), τ ′(σ (a, q), q ′)). The iterated prod-
uct Π ∗ · · · ∗Π is written Πn.

We denote by A∗ =⋃n�0 An the free monoid on A. It is conveniently represented as
an #A-regular rooted tree, with root the empty word, and with an edge from w to wa for
all w ∈A∗, a ∈A.

1 By “graph,” we shall therefore always mean “oriented graph,” with both loops and multiple edges allowed.
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Fig. 2.

The output and transition functions are naturally extended to functions σ :A∗ ×
Q∗ →A∗ and τ :A∗ ×Q∗ →Q∗, by

σ(a1a2 . . . an, q)= σ(a1, q)σ
(
a2 . . . an, τ (a1, q)

)
,

τ (a1a2 . . . an, q)= τ
(
a2 . . . an, τ (a1, q)

)
,

σ (a1 . . . an, q1q2 . . . qm)= σ
(
σ(a1 . . . an, q1), q2 . . . qm

)
,

τ (a1 . . . an, q1q2 . . . qm)= τ(a1 . . . an, q1)τ
(
σ(a1 . . . an, q1), q2 . . . qm

)
.

The extended input and output functions can be visualized in the following way: con-
sider for all a ∈ A,q ∈Q a small square with lower side labeled a, left side q , top side
σ(a, q) and right side τ(a, q). Consider a large rectangle R with bottom label a1 . . . an and
left label q1 . . . qm, and tile it by the above small squares. Then σ(a1 . . . an, q1q2 . . . qm)

and τ(a1 . . . an, q1q2 . . . qm) are the top and right labels of R (see Fig. 2).
Let Π and Π ′ be two automata on the same alphabet A. An automaton homomorphism

f :Π → Π ′ is a map f :Q → Q′ such that σ ′(a, f (q)) = σ(a, q) and τ ′(a, f (q)) =
f (τ(a, q)) for all a ∈ A,q ∈ Q. Note that there is a label-preserving graph homomor-
phism G(Π)→G(Π ′) if and only if there is an automaton homomorphism Π →Π ′. We
call Π ′ a subautomaton of Π if f is injective and Π ′ is a quotient of Π if f is surjective.

2.2. Actions

An automaton Π , with a given state q , induces a transformation Πq on the tree A∗,
via σ ; explicitly,

Πq(a1a2 . . . an)= σ(a1, q)Πτ(a1,q)(a2 . . . an).

Note that Π ′ ′Πq = (Π ∗Π ′)(q,q ′).
q
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Every orbit of this action lies in An for some n � 0.2

The transformations Πq are invertible if σ(−, q) is a permutation for all q ∈Q. In that
case Π is called invertible, and 〈Π〉, the group of the automaton Π , is defined as the group
generated by the Πq for all q ∈Q.

Let Γ be a group acting on a set X, with generating set S. The Schreier graph of X is
the graph with vertex set X, and for all x ∈X and s ∈ S an edge from x to sx, labeled s.

Lemma 2.1. The Schreier graph of 〈Π〉 on An is G((Π∗)n).

Proof. Direct verification. Indeed the vertices of G(Π∗) naturally identify with A, and its
edges identify with A×Q. Similarly, the vertices in G((Π∗)n) identify with An, and its
edges identify with An ×Q. �
Definition 2.2. A group Γ acting on a rooted tree A∗ is spherically transitive if for every
n the action is transitive on An; in other words, Γ acts transitively on the spheres around
the root vertex.

Definition 2.3. A group Γ is recurrent if for any vertex w ∈ A∗ the natural map
StabΓ (w)→ Aut(A∗), mapping g ∈ Γ to its restriction on wA∗ and identifying wA∗ with
A∗, has image Γ . Note that if Γ is generated by an automaton, then this image is by ne-
cessity a subgroup of Γ ; in that case, the statement needs to be checked only for all w ∈A.

An automaton Π is recurrent or spherically transitive if the associated group 〈Π〉 en-
joys the respective property.

Lemma 2.4. If Γ is recurrent and acts transitively on A, then it is spherically transitive.

2.3. Contraction

Let Π be an automaton. It is contracting if there is a finite set N ⊂ 〈Π〉 such that for any
g ∈ 〈Π〉 there is n ∈ N with τ(An,g)⊂ N . The minimal such set N is called the nucleus
of 〈Π〉. It may be defined as

N =
⋃

g∈〈Π〉

⋂
n0�0

⋃
n�n0

τ
(
An,g

)
.

Definition 2.5. The automaton is nuclear if it is contracting and its nucleus is equal to Q.

We remark that it is usually difficult to determine whether an automaton is contracting.
On the other hand, it takes polynomial time to check whether it is nuclear.

If Π is a finite, contracting automaton, and is generated by its nucleus N , then we may
replace Π ’s set of states with N , and obtain a nuclear automaton generating the same
group.

2 Equivalently, the action is radial.
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Lemma 2.6. If Π be a nuclear automaton, then τ :A×Q→Q is onto.

Proof. Assume to the contrary that q /∈ τ(A,Q). Then q could be removed from the nu-
cleus, contradicting its minimality. �
Lemma 2.7. [12, Lemma 2.11.12] If Π is nuclear, then there exists constants λ < 1,
K and n such that |τ(x, g)| < λ|g| + K for all g ∈ 〈Π〉 and x ∈ An, where |g| denotes
the minimal length of g ∈ 〈Π〉 as a word over Q.

We introduce also the following

Definition 2.8. Let Π be a contracting automaton. Its set of states Q = N therefore con-
tains a specific state, the identity, written ε. The automaton Π is smooth if τ is surjective
and the following subgraph of G(Π∗) is strongly connected: its vertices are letters a ∈A;
there is an edge from a to b for all q ∈Q with σ(q, a)= b and τ(q, a)= ε.

The following consequence of smoothness will not be used directly; its proof is implicit
within the proof of Proposition 4.6: if an automaton is smooth, then it is recurrent and
spherically transitive. More is true:

Lemma 2.9. If Π is a smooth automaton, then for every pair of alphabet-words a, b ∈A∗
of the same length, and any word v ∈Q∗, there exists a word w ∈Q∗ with σ(a,w) = b

and τ(a,w)= εn0v1ε
n1 . . . vkε

nk for some n0, . . . , nk � 0.

2.4. Profinite groups

Let a group Γ act on a tree A∗. There is then a family of finite quotients Γn defined by
restricting the action of Γ to An. These form a projective system Γn+1 → Γn, with inverse
limit Γ̄ = lim←−Γn.

Lemma 2.10. Γ̄ is the closure of Γ in the topological group Aut(A∗), with its standard
(compact-open) topology.

Proof. In the standard topology of W = Aut(A∗), since A∗ is discrete, a basis of neigh-
bourhoods of the identity is given by subgroups fixing larger and larger finite sets of
vertices. One may take as such subgroups the pointwise fixators StabW(n) of An; and
then Γ/(Γ ∩ StabW(n))∼= Γn.

Γ̄ is then closed in W because it is an inverse limit of the closed subgroups Γn ⊂W/

StabW(n).
To show that Γ is dense in Γ̄ , pick g = lim←− γn ∈ Γ̄ , with γn ∈ Γn. Choose lifts gn ∈ Γ

of γn. Since the action of gn agrees with that of g on An, we have gn→ g. �
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3. Groupoids

In what follows we will use interchangeably the words orbispace and groupoid; more
on that philosophy can be found in [10]. Recall that a groupoid is a graph (X,G, s, t) with
a multiplication {(g, g′) ∈ G×G | s(g′) = t (g)} → G, an inverse ( )−1 :G→ G and an
identity 1 :X→G, such that

s(gh)= s(g), t (gh)= t (h), gg−1 = 1s(g), g−1g = 1t (g), 1s(g)g = g = g1t (g).

More concisely, a groupoid is a small category in which all arrows are invertible. We will
usually denote the groupoid simply by G.

The group Gx = {g ∈G | s(g)= t (g)= x} of self arrows of an object x ∈ X is called
the isotropy of x, and the subset Gx = {g ∈G | s(g)= x} is called the fiber of x.

By groupoid, we shall always mean topological groupoid, i.e., we shall assume the sets
G,X will have natural topologies that make all structural maps—source, target, multipli-
cation, inverse, unit—continuous.

As a trivial example of groupoid, we may take G=X a topological space, with s, t the
identity. An example that will be relevant to the sequel is the following: consider

X = {0,1}N, I = {(x, x)
}
x∈X

∪ {(w01̄,w10̄)
}
w∈X∗ ∪

{
(w10̄,w01̄)

}
w∈X∗, (1)

where 0̄ and 1̄ denote the infinite words 00 . . . and 11 . . . , respectively. The set X is given
the Tychonoff (product) topology, and I is given the topology inherited from X×X. Note
that this makes I compact. Define s(g) and t (g) as the projections on the first and sec-
ond coordinate, respectively; set (x, y)−1 = (y, x), and (x, y)(y, z)= (x, z). We shall see
shortly (Lemma 3.6) that I should be understood as the interval [0,1].

A morphism of groupoids G → G′ is a pair of continuous maps φ :G → G′,
ψ :X → X′, such that ψ(s(g)) = s(φ(g)), ψ(t (g)) = t (φ(g)), φ(g)−1 = φ(g−1), and
φ(gh)= φ(g)φ(h).

One can think of our groupoid (even though this is not equivalent) as a topological space
Z =X/{s(g)= t (g)}, together with for every z ∈ Z a small enough neighbourhood Uz  z

and a homeomorphism Uz
∼= Ũz/Gz, where Gz is a discrete group acting on a topological

space Ũz and fixing a point z̃ ∈ Ũz identified with z.
Let us give a vague outline of this construction in the special case when s is locally

a homeomorphism. We denote by π :X → Z the projection. For a point z = π(x) ∈ Z,
we set Gz = Gx , and choose Ũz as some neighbourhood of z̃ = x ∈ X. We will define
an action of Gz on this neighbourhood. Let g ∈ Gz be an arrow. Since s :G→ X is a
local homeomorphism with s(g) = x, it admits a unique germ of section σs :X ��� G,
defined on a neighbourhood of x, and satisfying σs(x) = g. We define the action of g

to be the composite φg = tσs :X ��� X. It is a germ of homeomorphism defined on a
neighbourhood of x and fixing x. Clearly, if φg(x

′)= x′′ then s(g)= x′ and t (g)= x′′ and
hence π(x′)= π(x′′), so π is locally a homeomorphism Ũz/Gz → Z that3 sends z̃= x to
z= π(x).

3 We are being sloppy here: first of all, it might not be possible to lift the action Gz → {germs
of homeomorphisms} to an action defined on a neighbourhood of x. Secondly, Z might fail to be Hausdorff,
in which case we could not conclude that Ũz/Gz → Z is injective.
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3.1. Geometric realizations

The following classical construction builds a topological space |G| from a groupoid G,
such that all considerations on G have equivalents on |G|. First, let

Gn =
{
(x0, g1, x1, . . . , gn, xn) | xi ∈X, gi ∈G, t(gi)= xi = s(gi+1) for all i

}
be the space of composable sequences of n arrows. There are face maps di :Gn →Gn−1
and degeneracies si :Gn→Gn+1, for i ∈ {0, . . . , n}, given by

d0(x0, g1, x1, . . . , gn, xn)= (x1, . . . , gn, xn),

di(x0, g1, x1, . . . , gn, xn)= (x0, . . . , xi−1, gigi+1, xi+1, . . . , gn, xn),

dn(x0, g1, x1, . . . , gn, xn)= (x0, . . . , gn−1, xn−1),

si(x0, g1, x1, . . . , gn, xn)= (x0, g1, . . . , xi,1xi
, xi, . . . , gn, xn),

which turn the family (Gn)n�0 into a simplicial space. One then lets |G| be the geometric
realization of that simplicial space; namely, let Δn denote the standard n-simplex Δn =
{(t0, . . . , tn) ∈R

n+1 | ti � 0,
∑

ti = 1}, with its usual cofaces and codegeneracies

δi(t0, . . . , tn−1)= (t0, . . . , ti−1,0, ti , . . . , tn−1),

σi(t0, . . . , tn+1)= (t0, . . . , ti−1 + ti , . . . , tn+1);
then we take

|G| =
∐
n�0

Gn ×Δn
/(di(x), t

)∼ (x, δi(t)
)
,(

si(x), t
)∼ (x,σi(t)

)
.

Lemma 3.1. If G is compact metrizable, then so is the k-skeleton |G|k of G:

|G|k =
k∐

n=0

Gn ×Δn/∼.

Proof. Let us assume by induction that |G|k−1 is compact metrizable. The space |G|k is
obtained from |G|k−1 by gluing Gk ×Δk via an attaching map f :Gk × ∂Δk → |G|k−1.
Therefore, |G|k is the pushout of the following diagram of compact spaces:

Gk ×Δk

Gk × ∂Δk

ι

f |G|k−1

The reader who is more concerned about mathematical rigor than geometric interpretation may disregard the

above construction at no cost.
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Since ι is a closed inclusion, the pushout |G|k is the quotient of |G|k−1 �Gk ×Δk by a
closed equivalence relation, and is thus compact and metrizable. �

We say a groupoid G is connected if it is impossible to disconnect X = X′ � X′′ and
G = G′ �G′′ in disjoint open subsets such that (G′,X′) and (G,′′X′′) are groupoids by
restriction.

Lemma 3.2. G is connected if and only if |G| is connected.

Proof. If |G| is not connected, write it as |G| = A � B , and set X′ = X ∩ A and X′′ =
X ∩ B , where X is viewed as a subspace of |G|. Set then G′ = ⋃

x∈X′ G
x and G′′ =⋃

x∈X′′ G
x . The target map sends G′ to X′ and G′′ to X′′, because otherwise there would

be an edge crossing from X′ to X′′, which is impossible by assumption.
If G is not connected, then G=G′ �G′′ and therefore |G| = |G′| � |G′′|. �

Definition 3.3. Let (φ,ψ) be a morphism of groupoids, φ :G→G′ and ψ :X→X′. It is
a covering if ψ is a covering, and

G
φ

s

G′

s′

X
ψ

X′

is a pull-back diagram.

This implies that φ and ψ have the same degree, which we call the degree of (φ,ψ).
We shall actually abuse notation and denote both φ and ψ by the letter φ.

Lemma 3.4. Let

R̃

pR

α̃

β̃
X̃

pX

R
α

β
X

be a diagram of compact spaces, where αpR = pXα̃, βpR = pXβ̃ , and pR,pX are degree-
d covering maps. Suppose that Z = X/R is Hausdorff, and that the map of coequalizers
pZ : Z̃ = X̃/R̃→ Z has fibers of cardinality d . Then pZ is a covering map.

Proof. Pick z ∈ Z and let C be its preimage in X. The restriction of X̃ to C is trivial-
ized by its map to p−1(z). Extend that trivialization to an open neighbourhood U ⊃ C. It
Z



638 L. Bartholdi et al. / Journal of Algebra 305 (2006) 629–663
induces trivializations of R̃ on α−1(U) and β−1(U). Moreover, these trivializations agree
on α−1(C)= β−1(C). The structure group being finite hence discrete, they must agree on
some neighbourhood V ⊃ α−1(C) contained in α−1(U) ∩ β−1(U). Pick a neighbourhood
U ′′ of C satisfying α−1(U ′′)⊂ V and β−1(U ′′)⊂ V .

Next, saturate U ′′ under the equivalence relation generated by R, by setting U ′ = X \
p1p

−1
2 (X \U ′′), where p1,p2 are respectively the first- and second-coordinate projections

X ×Z X ⇒ X; they are closed maps on the compact X ×Z X, because Z was assumed
Hausdorff.

Set V ′ = α−1(U ′)= β−1(U ′). The trivializations induce isomorphisms

⎛
⎜⎜⎜⎝

R̃|V ′
pR

α̃

β̃

X̃|U ′
pX

V ′
α

β
U ′

⎞
⎟⎟⎟⎠∼=

⎛
⎜⎜⎜⎝

V ′ × {1, . . . , d}
α×1

β×1
U ′ × {1, . . . , d}

V ′
α

β
U ′

⎞
⎟⎟⎟⎠ . (2)

Therefore the coequalizers of (2) form a trivial covering. Now remember that the quotient
U ′/V ′ is a neighbourhood of z ∈ Z. We have just exhibited a trivialization of Z̃ on U ′/V ′.
It follows that the map pZ : Z̃→Z is a covering. �
Proposition 3.5. A homomorphism φ :G→ G′ induces functorially a continuous map
|φ| : |G| → |G′|. The map φ is a covering if and only if |φ| is a covering, and then both
have the same degree.

Proof. Let (φ :G→G′, φ :X→X′) be our groupoid homomorphism. Define |φ| : |G| →
|G′| by

|φ|(x0, g1, . . . , xn; t0, . . . , tn)=
(
φ(x0),φ(g1), . . . , φ(xn); t0, . . . , tn

)
.

Assume now that φ is a covering of degree some cardinal ℵ. First note that com-
posable sequences of arrows (x′0, g′1, . . . , x′n) ∈ G′n satisfy the “unique lifting property.”
Namely, given x0 ∈ X with φ(x0) = x′0 there is a unique composable sequence of ar-
rows (x0, g1, . . . , xn) ∈ Gn with φ(xi) = x′i and φ(gi) = g′i . Indeed g′1 ∈ (G′)φ(x0) has
a unique lift g1 ∈ Gx0 ; we set x1 = t (g1), and lift g′2, etc., until x′n. Every sequence
(x′0, g′1, . . . , x′n) ∈G′n therefore has as many preimages in Gn as x′0 has preimages in X.

We have shown that (Gn → X)→ (G′n → X′) is a pullback diagram, and hence that
Gn →G′n is a covering.4 Therefore, by crossing with Δn, the map

∐
n�0

Gn ×Δn →
∐
n�0

G′n ×Δn

is a covering of degree ℵ.

4 Actually, we have only shown it at the level of sets, but an easy diagram chase shows that it is also a pullback
of topological spaces.
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Now recall that |G| and |G′| are obtained by quotienting, i.e., taking a coequalizer

∐
n�1

n∐
i=0

Gn ×Δn−1 �
∐
n�0

n∐
i=0

Gn ×Δn+1 α

β

∐
n�0 Gn ×Δn,

where

α =
k∐

n=1

n∐
i=0

di × 1Δn−1 �
k−1∐
n=0

n∐
i=0

si × 1Δn+1

and

β =
k∐

n=1

n∐
i=0

1Gn × δi �
k−1∐
n=0

n∐
i=0

1Gn × σi.

In the following diagram both rows are coequalizers:

k∐
n=1

n∐
i=0

Gn ×Δn−1 �
k−1∐
n=0

n∐
i=0

Gn ×Δn+1
α

β

φ̇

∐
n�0

Gn ×Δn

φ̈

|G|k

|φ|

k∐
n=1

n∐
i=0

G′n ×Δn−1 �
k−1∐
n=0

n∐
i=0

G′n ×Δn+1
α′

β ′

∐
n�0

G′n ×Δn

|G′|k

The space |G|k is the union of the Gn × (Δn)◦. On each such piece, |φ| is the product of
φ :Gn →G′n and the identity on (Δn)◦. In particular, |φ| is everywhere d-to-1. Applying
Lemma 3.4, we see that |G|k → |G′|k is a covering, and by taking direct limits, so is
|G| → |G′|.

Conversely, if |G| → |G′| is a cover, then X = |G|0 → X′ = |G′|0 is a cover by
restriction. The diagram (G → X) → (G′ → X′) yields a map G → X ×X′ G′, for
which we need to find an inverse. The mapping cylinder of s (respectively of s′)
Ms = G × [0,1] ∪s X sits as a subspace of |G| (respectively |G′|). It is the image of
G× [0, 1

2 ] ↪→G× [0,1]� |G|1 ⊂ |G|. The map Ms →Ms′ is therefore also a cover. We
have a map (X ×X′ G′)× [0,1] →Ms′ defined by (x, g′, t) �→ (g′, t). Using the unique
homotopy lifting extension, we obtain a lift (X×X′ G′)×[0,1]→Ms making the diagram

(X×X′ G′)× [0,1] Ms Ms′

(X×X′ G′)× {0} X X′
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Fig. 3.

commute. Restriction to (X×X′ G′)→G× {1} gives us our desired map. �
Lemma 3.6. The groupoid I defined in (1) admits an injective continuous map φ : [0,1]→
|I | with φ(0)= 0̄ and φ(1)= 1̄.

Proof. We first define a map χ :X→[0,1], by

χ(w1w2 . . .)=
∞∑
i=1

2wi3
−i .

Then we define ψ : |I | → [0,1] by

ψ(x0, g1, x1, . . . , gn, xn; t0, . . . , tn)=
n∑

i=0

tiχ(xi).

Consider the image |I |+ of ({(x, x)}x∈X ∪ {(w01̄,w10̄)}w∈{0,1}∗)×Δ1 in |I |; then ψ de-
fines a continuous bijection between |I |+ and [0,1]. Since |I |+ is compact, ψ admits a
continuous inverse φ. �

Actually, φ([0,1]) is a deformation retract of |I |: the n-skeleton |I |n is homeomorphic
to the closure in R

n+1 of the countable union of spheres (see also Fig. 3)

⋃
w∈{0,1}∗

{
x ∈R

n+1
∣∣∣∣
∥∥∥∥x −

(
χ(w01̄)+ 3−|w|

6
,0, . . . ,0

)∥∥∥∥= 3−|w|

6

}
.

A nondegenerate n-simplex |Σ | of |I |n comes from a sequence Σ = (w01̄,w10̄,w01̄, . . .)

or (w10̄,w01̄,w10̄, . . .) in In. There are exactly two such simplices for every (n − 1)-
sphere in In−1, which glue on Σ as the two hemispheres attach to |Σ | in |I |n. One can
retract |I | to |I |+1 by successively sliding the n-spheres over the (n+ 1)-spheres, in shorter
and shorter amounts of time as n→∞ so that the retraction be performed in finite total
time.

We say that a groupoid G is arcwise connected if for every x, y ∈ X there exists a
homomorphism γ : I →G with γ (0̄)= x and γ (1̄)= y.
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Lemma 3.7. G is arcwise connected if and only if |G| is arcwise connected.

Proof. Assume first that G is arcwise connected. Notice first that any point (x0, g1, x1, . . . ,

gn, xn; t0, . . . , tn) ∈ |G| is connected by an interval, within a simplex, to a point (x0, g1, x1,

. . . , gn, xn;1,0, . . . ,0)∼ (x0,1) sitting in the 0-skeleton G0×Δ0 =X of G. It is therefore
enough to show that any two points x, y ∈X ⊆ |G| are connected by an interval.

Now by assumption we have a homomorphism γ : I →G with γ (0̄)= x and γ (1̄)= y,
which induces a path |γ | : |I | → |G|. Precomposing with the φ : [0,1] → |I | from
Lemma 3.6, we obtain a path δ = |γ |φ : [0,1]→ |G| with δ(0)= x and δ(1)= y.

Conversely, assume that |G| is arcwise connected; let x, y ∈ |G|0 be two points,
and γ : [0,1] → |G| a path with γ (0) = x and γ (1) = y. Set Jn = γ−1(|G|n) for all
n ∈ N. Since the Jn are closed in [0,1] there is by compactness of [0,1] a minimal
n ∈ N with Jn = [0,1]. If n > 1, we may perturb γ on Jn \ Jn−1 to make it avoid
Gn × {( 1

n+1 , . . . , 1
n+1 )} \ |G|n−1, and then homotope it within Δn so that its image is

entirely contained in |G|n−1. By repeating this argument, we may assume that γ [0,1] lies
in |G|1 and is transverse to G1 × {( 1

2 , 1
2 )} \ |G|0.

Set now C = γ−1(G1 × {( 1
2 , 1

2 )}) \ J0. It is discrete in [0,1] \ J0, and therefore count-
able. Let Y be the topological space obtained by cutting [0,1] at every point in C; more
precisely, Y = [0,1] × {0} ∪ C × {1} with the topology inherited from the lexicographi-
cal ordering. Let π :Y → [0,1] be projection on the first coordinate; then γπ :Y → |G|1
admits an obvious retraction to δ :Y → |G|0. We let K be the equivalence groupoid Y/π ,
namely K = {((t, ε), (t, ε′)) | (t, ε), (t, ε′) ∈ Y }; then the map δ extends to a morphism of
groupoids K →G such that δ(0,0)= x and δ(1,0)= y. It therefore suffices to exhibit a
morphism ι of groupoids from I to K with ι(0̄)= (0,0) and ι(1̄)= (1,0).

Choose a surjective monotone map from the Cantor set {0,1}N to [0,1] such that all
points in C are hit by a point of the form w01̄ (and hence also of the form w10̄). This map
lifts to a map {0,1}N →K and induces the desired ι. �
3.2. Topological quotients

Another way of associating a space to a groupoid (X,G) is to quotient X by the equiv-
alence relation x ∼ y if there exists g ∈ G with s(g) = x and t (g) = y. The topological
quotient of G is X/∼, denoted G�. It is less well behaved than the geometric realization
|G|, for example, because if φ :G→H is a covering of orbispaces then G� →H� is not
necessarily a covering. It will typically be a branched covering, with branching locus the
set of points x ∈ G� where Gx → Hφ(x) is not a group isomorphism. However, we still
have the equivalences

Proposition 3.8.

G connected ⇔ |G| connected ⇔ G� connected,

G compact ⇔ |G|1 compact ⇔ |G|k compact ∀k ∈N ⇒ G� compact.

Note that π1(|G|) and π1(G�) are very different; we are more interested in the former,
and denote π1(G)= π1(|G|).
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3.3. Morita equivalence

In category theory, two categories can be equivalent even if their objects cannot be put
in bijection.5 The corresponding notion for topological groupoids is usually called Morita
equivalence. Unlike abstract categories, two Morita equivalent groupoids do not always
admit continuous functors between them:

Definition 3.9. Let (G,X) and (G′,X′) be two topological groupoids. They are Morita
equivalent if there exists a topological space P , equipped with two maps sP :P →X and
tP :P →X′, such that

G′′ =G � P � P �G′

sG�sP�tP�sG′tG�tP�sP�tG′

X′′ =X �X′

can be endowed with the structure of a groupoid. We further assume that the bijective maps
P/(p ∼ ph)→X and P/(p ∼ gp)→X′ are homeomorphisms.

Assume furthermore that G and G′ come equipped with self-coverings f,f ′. Then
(G,f ) and (G′, f ′) are Morita equivalent if (G′′,X′′) admits a self-covering f ′′ whose
restriction to G and G′ yields f and f ′, respectively.

For instance, if X = X′ = {·}, then G and G′ are Morita equivalent precisely when
they are isomorphic groups. As another example, the groupoid I defined in (1) is Morita
equivalent to the groupoid G′ = X′ = [0,1], by taking P = {0,1}N with sP (w) = w and
tP (w)=∑wi2−i .

Lemma 3.10. If G and G′ are two Morita equivalent groupoids, then

(1) their topological quotients G� and (G′)� are homeomorphic;
(2) there is a functorial bijection J : {covers of G}↔ {covers of G′};
(3) if furthermore (G,f ) and (G′, f ′) are Morita equivalent, then J associates the cover

corresponding to f n with the cover corresponding to (f ′)n for all n ∈N.

Proof. For the first point, it suffices to write

G� =X/
(
s(g)∼ t (g)

)= (P/(p ∼ ph)
)
/(p ∼ gp),

(G′)� =X′/
(
s(h)∼ t (h)

)= (P/(p ∼ gp)
)
/(p ∼ ph).

For the second point, let (H,Y ) be a cover of (G,X) with maps π :H → G and
π :Y →X. Define

5 For instance, the trivial category with one object and one isomorphism is equivalent to the category with two
objects a, b and four isomorphisms, one between any two objects.
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Y ′ = {(y,p) ∈ Y × P | sP (p)= π(y)
}
, ∀h ∈H :

(
t (h),p

)∼ (s(h),π(h)p
)
,

H ′ = {(h,p, q) ∈H × P 2 | sP (p)= s(πh), sP (q)= t (πh)
}
,

∀k, � ∈H : (h,p, q)∼ (kh�−1,π(k)p,π(�)q
)
,

which is a groupoid, with source s(h,p, q) = (s(h),p), target t (h,p, q) = (t (h), q), in-
verse (h,p, q)−1 = (h−1, q,p) and multiplication (h,p, q) · (k, q, r) = (hk,p, r). This
construction associates to (H,Y ) a groupoid (H ′, Y ′), with a cover π ′ : (H ′, Y ′) →
(G′,X′) given by π ′(y,p)= tP (p) ∈X′ and π ′(h,p, q)= p−1π(h)q ∈G′.

We now show that the map π ′ :Y ′ → X′ is a cover. Indeed, it is the coequalizer of the
diagram

H ×X P Y ×X P Y ′

G×X P P
tP

X′

and the first two vertical arrows are pulled back from Y →X, which was assumed to be a
cover.

To apply Lemma 3.4, we need to show that Y ′ → X′ is d-to-1. We first show that
the fiber (π ′)−1(x′) is isomorphic to the fiber π−1(sP (p)) via F :y �→ [(y,p)], for some
p ∈ P satisfying tP (p) = x′. To see that F is onto, notice that any (ȳ, p̄) ∈ (π ′)−1(x′)
is equivalent to (s(h),p) for some h lifting pp̄−1 and having target y. Also, the relation
(t (h),p)∼ (s(h),π(h)p) is transitive, and the only way to have (y,p)∼ (y′,p) is to let
h= 1, so F is injective. It follows that Y ′ →X′ is d-to-1 and by Lemma 3.4 it is a cover.

We next show that this construction is a bijection. For this, apply it again to (H ′, Y ′),
yielding a groupoid (H ′′, Y ′′). This new groupoid is canonically isomorphic to (H,Y ). We
show this on the level of Y ′′, and skip the details for H ′′.

By definition,

Y ′′ = {(y,p,p′) ∈ Y × P 2 | sP (p)= π(y), tP (p)= tP (p′)
}
,

∀h ∈H, g ∈G′:
(
t (h),p,p′

)∼ (s(h),π(h)pg,p′g
)
. (3)

We defined two maps Y → Y ′′, Y ′′ → Y and show that they are inverses to each other.
First, given y ∈ Y , there exists p ∈ P with sP (p) = π(y), and we define Y → Y ′′ by
y �→ (y,p,p). If we had made another choice p′ ∈ P , we would have obtained (y,p′,p′)
which is equivalent to (y,p,p) by taking h = 1y, g = p−1p′ in (3); so the map is well
defined.

Given (y,p,p′) ∈ Y ′′, there exists a unique k ∈H with s(k)= y and π(k)= p(p′)−1,
because π is a covering. We define Y ′′ → Y by (y,p,p′) �→ t (k). If in (3) we consider two
equivalent elements (t (h),p,p′) and (s(h),π(h)pg,p′g), and find k ∈H with s(k)= t (h)

and π(k) = p(p′)−1, then s(hk) = s(h) and π(hk) = π(h)pg(p′g)−1; then t (hk) = t (k)

so the map is well defined.
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Next, Y → Y ′′ → Y is the identity, because y �→ (y,p,p) �→ y using k = 1y in the
paragraph above.

Finally, Y ′′ → Y → Y ′′ is the identity: we have (y,p,p′) �→ t (k) �→ (t (k),p′,p′)
where s(k)= y and π(k)= p(p′)−1. We take h= k, g = 1t (p′) to show that (t (k),p′,p′)
and (y,p,p′) are equivalent.

We now check the last assertion of the lemma. We again check it only on objects; the
proof is similar for morphisms. Let f ′′ be the covering map of P given by the Morita
equivalence. The cover of (G,X) associated to f n is again (G,X), which yields

Y ′ = {(x,p) ∈X× P | sP (p)= f n(x)
}
, ∀g ∈G:

(
t (g),p

)∼ (s(g), f n(g)p
)
,

with covering map Y ′ →X′ given by (x,p) �→ tP (p). We show that this covering is equiv-
alent to X′ →X′, x′ �→ (f ′)nx′.

Given x′ ∈ X′, there exists q ∈ P with tP (q) = x′. Define X′ → Y ′ by x′ �→
(sP (q), (f ′′)n(q)). Conversely, given (x,p) ∈ Y ′, there exists a unique q ∈ P with
(f ′′)n(q)= p and sP (q)= x, because f ′′ is a cover. Define Y ′ →X′ by (x,p) �→ tP (q).
These two maps are mutual inverses. �

4. Orbispaces from automata

Let Π be a finite invertible automaton. The action space of Π is the groupoid O(Π)

with objects AN, with N= {1,2, . . .}, with morphisms

O(Π)= {(α,φ) ∈AN × 〈Π〉N | φ(n+ 1)= τ
(
α(n),φ(n)

)
for all n

}
,

with source map s(α,φ)= α and target map t (α,φ)(n)= σ(α(n),φ(n)).
The limit space of Π is the groupoid L(Π) with objects A−N, morphisms

L(Π)= {(α,φ) ∈A−N × 〈Π〉−N | φ(n+ 1)= τ
(
α(n),φ(n)

)
for all n,

and φ(−N) is finite
}
,

with source map s(α,φ)= α and target map t (α,φ)(n)= σ(α(n),φ(n)). Note that by our
convention 0 /∈N. We extend φ at 0 by φ(0)= τ(α(−1),φ(−1)).

The solenoid space of Π is the groupoid S(Π) with objects AZ, morphisms

S(Π)= {(α,φ) ∈AZ × 〈Π〉Z | φ(n+ 1)= τ
(
α(n),φ(n)

)
for all n,

and φ(Z) is finite
}
,

with source map s(α,φ)= α and target map t (α,φ)(n)= σ(α(n),φ(n)).
Note that the finiteness condition “φ(N) is finite” is automatically satisfied in O(Π).
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The sets A and 〈Π〉 are given the discrete topology. For all of these groupoids, the object
set is given the Tychonoff (product) topology, in which a basis for the topology is given by
cylinders

On1,a1,...,nk,ak
= {α: (N or −N or Z)→A | α(n1)= a1, . . . , α(nk)= ak

}
.

Similarly, the morphism set is given the restriction of the product topology.
The action space is the usual groupoid considered in association with a group action:

there is a morphism from α ∈AN to g(α) for all g ∈ 〈Π〉. The action space has few useful
topological properties, because in most cases the orbits of 〈Π〉 are dense in AN.

The limit space is endowed with a unilateral shift f :L(Π) → L(Π), given by
f (α,φ)(n)= (α(n−1),φ(n−1)). This map defines a #A-to-1 self-covering map of L(Π).

The solenoid is endowed with a bilateral shift f :S(Π)→ S(Π), given by f (α,φ)(n)=
(α(n− 1),φ(n− 1)). This map defines a homeomorphism of S(Π).

Lemma 4.1. [12, Proposition 3.2.8] If Π is nuclear with nucleus N , then the groupoids
L(Π) and S(Π) have finite fibers of cardinality at most #N .

Therefore the topological dimension of L(Π)� and of S(Π)� is at most #N − 1.

Lemma 4.2. If Π is nuclear, then

L(Π)= {(α,φ) ∈A−N ×Q−N | φ(n+ 1)= τ
(
α(n),φ(n)

)
for all n

}
,

S(Π)= {(α,φ) ∈AZ ×QZ | φ(n+ 1)= τ
(
α(n),φ(n)

)
for all n

}
.

In other words, the morphisms of L(Π) are given by negative-infinite paths in G(Π),
and the morphisms of S(Π) are given by bi-infinite paths in G(Π). In the other direc-
tion, the morphisms of O(Π) are generated by positive-infinite paths in G(Π), since these
correspond to generators of 〈Π〉.

Corollary 4.3. If Π is recurrent and nuclear, then L(Π) is connected, metrizable, with
topological dimension at most #Q− 1.

Theorem 4.4. [12, Proposition 5.7.8]

S(Π)= lim←−
(
L(Π)

T←− L(Π)
T←− · · ·).

Consider the Schreier graphs Gn of Γ = 〈Π〉 on An. There is a graph covering map
Gn+1 →Gn, given by the map

a1 . . . an+1 �→ a1 . . . an
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on their vertices. There is also a map between the geometric realizations6 of Gn+1 and Gn,
given as follows: first, map the vertices by

a1a2 . . . an+1 �→ a2 . . . an+1.

Then, map the edge labeled q :a1 . . . an+1 → b1 . . . bn+1 to the edge labeled τ(a1, q) :
a2 . . . an+1 → b2 . . . bn+1.

Assume now that Π is smooth. Then an expansion rule for Π is the following: first, for
every q ∈Q, elements eq ∈A and vq ∈Q with τ(eq, vq)= q . Second, for every a, a′ ∈A

a word wa,a′ ∈ Q∗ such that σ(a,wa,a′) = a′ and τ(a,wa,a′) = ε|wa,a′ |, a power of the
identity state.

We note that the existence of an expansion rule is equivalent to the smoothness of the
automaton.

Proposition 4.5. If Π is nuclear, then L(Π), as a topological graph,7 is the inverse limit
of the geometric realizations of the Schreier graphs Gm of 〈Π〉 on Am.

Proof. Clearly A−N = lim←−Am, where the map Am+1 → Am is given by deletion of the
first letter. Note that the edges of Gm are in one-to-one correspondence with the set

{
(α,φ) ∈Am ×Qm | φ(n+ 1)= τ

(
α(n),φ(n)

)
for all n ∈ {1, . . . ,m− 1}} (4)

where to any edge q of Gm from a1 . . . am to b1 . . . bm one puts in correspondence the
groupoid element (α,φ) given by α(n) = an and φ(n) = τ(a1, . . . , an−1, q). It is then
clear by Lemma 4.2 that the inverse limit of (4) is L(Π). �
Proposition 4.6. If Π is nuclear and spherically transitive, then L(Π) is connected. If
furthermore Π is smooth, then L(Π) is arcwise connected.

Proof. To prove that L(Π) is connected it is sufficient, thanks to Proposition 4.5, to show
that the graphs Gn are connected; but this is precisely the condition that Π is spherically
transitive.

Assume now that Π is smooth, and let ({eq}, {vq}, {wa,a′ }) be an expansion rule for Π .
By Lemma 3.7, it is sufficient to construct, for any points x, y ∈ A−N ⊂ L(Π), a path
γ : [0,1] → |L(Π)| from x to y. We will define partial maps γn : [0,1] ��� |L(Π)| con-
verging to γ .

Each γn will be defined on a finite union of closed subintervals of [0,1], in such a
way that if [a, b] and [c, d] are two consecutive intervals, then γn(b) and γn(c) are in the
0-skeleton of |L(Π)| and have identical last n symbols.

6 Here we mean the usual geometric realization of a graph, not to be confused with the geometric realization
|G| of a groupoid G.

7 I.e., as a topological space X with edges E ⇒ X.
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We start by γ0 defined only at 0 and 1, with γ0(0) = x and γ0(1) = y. Assume
now that γn−1 has been defined; γn coincides with γn−1 on the domain of γn−1. Con-
sider two consecutive intervals [a, b] and [c, d] on which γn−1 is defined, and write
γn−1(b) = . . . b−nb−n+1 . . . b−1 and γn(c) = . . . c−nb−n+1 . . . b−1. Set u = wb−n,c−n and
� = |u|, and cut the interval [b, c] into 2�+ 1 parts E0,F1,E1, . . . ,F�,E�. Define γn on
Fi as the linear map from Fi onto the geometric realization of the edge (α,φ) defined by

α(m)=
⎧⎨
⎩

bm if m >−n,

σ (b−n,u1 . . . ui−1) if m=−n,

eφ(m+1) if m <−n,

φ(m)=
⎧⎨
⎩

ε if m >−n,

ui if m=−n,

vφ(m+1) if m <−n.

There is clearly a partially defined map γ ′(t)= limn→∞ γn(t). On the intervals at which
it is not defined, it can be extended by a constant path; we let γ be this extension [0,1]→
|L(Π)|.

Because of smoothness, for every interval [b, c] between two intervals of definition of
γn there is a corresponding word a ∈ An for which the following happens: Given a point
x ∈ [b, c], either x is mapped to an element α ∈ |L(Π)|0 = A−N of the 0-skeleton whose
last n entries agree with a, or x is mapped to some edge (α,φ) ∈ |L(Π)|1, where the last
n entries of α agree with a and the last n entries of φ are all the identity state ε.

It remains to show that γ is continuous; intuitively, this happens because, as n→∞ and
the length of the intervals Fi on which the γn are defined tends to 0, the images of the γn

are paths in |L(Π)| which become closer and closer to identity morphisms, and degenerate
to a single point in |L(Π)|.

Let us be more precise. The map γ : [0,1] → |L(Π)|1 is clearly continuous on all Fi ’s
interiors, so there remains to consider two cases: first, continuity at a point x ∈ [0,1]\⋃Fi .
Its image γ (x) lies in A∗ = |L(Π)|0. Viewing |L(Π)|1 as a quotient of L(Π)1 ×Δ1 by
the relation ∼ that collapses all sets {1w} × Δ1 to a point, a neighbourhood of γ (x) =
1γ (x)×Δ1/∼ can be chosen of the form V ×Δ1/∼, where V is a neighbourhood of 1γ (x)

in L(Π)1. We may assume furthermore V to be the cylinder of all elements in L(Π)1 ⊂
A−N ×Q−N with prescribed last n terms: the set of (α,φ) in which the last n letters of
α agree with w, and the last n states of φ are all ε. Then γ−1(V ×Δ1/∼) contains the
interval (b, c)  x, where b and c are chosen such that [a, b] and [c, d] are two consecutive
intervals on which γn is defined and b < x < c. We have shown that the preimage of a
neighbourhood of γ (x) is a neighbourhood of x, so γ is continuous at x.

Next, let us consider both left and right continuity at x ∈ ∂Fi . On the side of Fi it is
clear from the definition of the γn, and on the other side the above argument applies. �

Note that we have actually shown slightly more in this proof; namely, since all the
morphisms (α,φ) considered satisfy φ0 = ε, we have shown, anticipating Definition 5.1:

Proposition 4.7. If Π is nuclear and smooth8 then the standard tile T (Π) is arcwise
connected.

8 Recall that smoothness implies spherical transitivity.
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5. Tilings from automata

This section extends on Section 4, where a limit orbispace L(Π) and a solenoid S(Π)

were constructed from an automaton Π . First, we define a few more geometric objects
associated with an automaton Π .

Definition 5.1. The standard tile T (Π) is the groupoid with same objects A−N as the limit
space, but whose morphisms are inverse sequences starting at the trivial state:

T (Π)= {(α,φ) ∈ L(Π) | φ(0)= ε
}
.

The group Γ embeds in the group of homeomorphisms of AN. The germ space G(Π)

has as objects AN, and has as set of morphisms from w to w′ all germs of homeomorphisms
mapping w to w′ and coming from Γ . It is a quotient of the action groupoid: for instance,
in the action groupoid, the automorphisms at w is the isotropy subgroup of w, while in the
germ groupoid it is the quotient of the isotropy of w by the stable isotropy of w, i.e., those
g ∈ Γ that fix an open neighbourhood of w.

The geometric notions corresponding to the tiles are slightly more tricky to set up: the
translates of the standard tile almost cover the solenoid, but for the discarded edges. We
want to add “half of each edge” to the standard tile to obtain a covering of the solenoid
with empty-interior intersections.

Call an edge (α,φ) of L(Π) critical if φ0 �= ε, and define the critical locus C ⊂ |L(Π)|
as follows. First let C1 ⊂ |L(Π)|1 be the set of middle points of critical edges. A point
x = (g, t) ∈ |L(Π)|n with g ∈ L(Π)n and t ∈Δn is in C if (one of) the closest point(s) to t

in the 1-skeleton of Δn, call it t ′, satisfies (g, t ′) ∈ C1. The critical locus is a hypersurface
in |L(Π)| that intersects all critical edges in their middle points.

Definition 5.2. The geometric standard tile T̄ is obtained from |L(Π)| by cutting it along
the critical locus C. We therefore have a surjective map T̄ → |L(Π)| that is a homeomor-
phism away from C and that is generically 2-to-1 on C.

Lemma 5.3. The natural inclusion |T (Π)| ⊂ T̄ is a deformation retract.

Proof. Consider a simplex K = (x0, g1, . . . , xn)×Δn ⊂ |L(Π)|. We will define a retrac-
tion on each connected component K ′ of the preimage of K in T̄ . We view K ′ as a subset
of K . Let A and B be the set of vertices of K that belong, respectively do not belong, to
K ′. We define a retraction on K ′ as follows:

ρs

(
(x0, g1, . . . , xn), (t0, . . . , tn)

)= ((x0, g1, . . . , xn),
(
u0(s), . . . , un(s)

))
,

where

ui(s)=
{(

1+ s

∑
j∈B tj∑
j∈A tj

)
ti if the ith vertex of K belongs to A,
(1− s)ti if the ith vertex of K belongs to B.



L. Bartholdi et al. / Journal of Algebra 305 (2006) 629–663 649
This retraction is compatible with the face maps and degeneracy maps.
We check that ρs is the identity on simplices in |T (Π)|, because for these simplices we

have B = ∅. �
Within the limit space, we see a collection of copies of the standard tile, as follows: for

w ∈ A∗, let Tw be the full subgroupoid on the objects A−Nw. The same construction can
be performed for the geometric standard tile: given w ∈ |L|0, set

w̄ = {y ∈ Star(w) | d(y,w) � d(z,w) ∀z ∈ Star(w)∩ |L|0
}
. (5)

For any T ⊂ |L|0, set T̄ =⋃w∈T w̄. Then for w ∈ A∗ we define the geometric tile Tw ⊂
|L(Π)| as A−Nw.

Proposition 5.4. Assume Π is nuclear; then for any n ∈ N, the tiles {Tw | w ∈ An} cover
|L(Π)|, and two tiles Tw,Tw′ overlap if and only if w,w′ are connected in the Schreier
graph of 〈Π〉 on An.

Furthermore each tile is the closure of its interior, and these tiles overlap with empty-
interior intersection.

The tiling {Tw |w ∈An+1} is a refinement of the tiling {Tw |w ∈An}, with the tile Txw

being contained in the tile Tw .

Proof. If two tiles Tw,Tw′ overlap, then there is a morphism (α,φ) of L(Π) in the nth
preimage of the critical locus, i.e., satisfying φ(−n) �= ε. The Schreier graph contains an
edge, labeled φ(−n), from w to w′.

Conversely, let g :w→w′ be such an edge. By Lemma 2.6, there exists (α,φ) ∈ L(Π)

with φ(−n)= g and α([−n,−1])=w. The tiles Tw and Tw′ overlap on the middle of that
edge.

The second statement is obvious, because the interior of a tile Tw is obtained by replac-
ing � by < in the definition of w̄. �

Note that the tilings of the topological space L(Π)� is much more complicated [2]. The
automaton Π satisfies the open set condition if for every q ∈Q there exists a ∈ An with
τ(a, q)= ε. This is equivalent to asking that every g ∈ 〈Π〉 have a trivial state.

Proposition 5.5. [12, Corollary 3.3.7] If Π satisfies the open set condition, then every tile
in L(Π)� is the closure of its interior, and for every n � 0 the tiles in the nth subdivision
of L(Π)� have disjoint interior.

On the other hand, if Π does not have the open set condition, then for every n large
enough one can find a tile in the nth subdivision of L(Π)� which is covered by the other
tiles in the same subdivision.

Next, consider the solenoid S(Π). This is naturally a foliated space: for O a Γ -orbit
on AN, let FO denote the full subgroupoid on the objects A−NO. Note that there are no
morphisms in S(Π) between distinct leaves.
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We endow the leaf FO with the “left-Tychonoff, right-discrete” topology generated by
open sets On,w = {α : Z→A | α(n+ i)=wi ∀i ∈N} for all n ∈ Z and w ∈AN.

Lemma 5.6. Assume Π is recurrent and spherically transitive. Then the shift map
f :S(Π)→ S(Π) preserves the foliation of S(Π).

Proof. It suffices to show that the partition of AZ in A−NO is shift-invariant. For that
purpose, we show that O is a Γ -orbit if and only if AO is a Γ -orbit.

Pick g ∈ Γ , a ∈ A and v ∈ O. Then g · av = σ(a, g)τ (a, g) · v ∈ AO. Conversely,
pick a, b ∈ A and v,w ∈O. Then there exists g ∈ Γ with g · a = b, whence g · av = bv′
with v′ ∈ O, and g′ ∈ Γ with g′ · v′ = w. Since Γ is recurrent, there exists h ∈ Γb with
τ(b,h)= g′; therefore hg · av = bw. �

The leaves of the solenoid are again tiled spaces: for w ∈ O ⊂ AN, let Tw be the full
subgroupoid on the objects A−Nw. Define the geometric tiles Tw as in (5).

Theorem 5.7. Assume Π is nuclear, and let O be a Γ -orbit in AN. Then |FO| ⊂ |S(Π)| is
tiled by {Tw |w ∈O}.

For any w ∈ AN, the adjacency graph of tiles on |FΓ w| is the Schreier graph of
〈Π〉/Stab(w).

Furthermore each tile is the closure of its interior, and these tiles overlap with empty-
interior intersection.

The shift map f :S(Π)→ S(Π) sends each leaf FO to another one carrying a refine-
ment of the tiling of FO . The tile Txw ⊂ FO is mapped into the tile Tw .

Proof. Analogous to that of Proposition 5.4. �
Every leaf FO naturally covers L(Π). The covering map FO → L(Π) is given by the

restriction of the natural projection map S(Π)→ L(Π) given by keeping only the negative
part of objects and morphisms. This covering map folds every tile Tw of |FO| onto |L(Π)|.

We note that S(Π)→ L(Π) has the structure of a foliated bundle S(Π)= L̃×Γ AN in
the sense of [11]. To see this, define the groupoid L̃ as follows: its objects are A−N × Γ .
Its set of morphisms is the set of (α,φ,g) ∈A−N×Γ −N×Γ such that (α,φ) ∈ L(Π) and
φ0 = g. There is a natural action of Γ on AN, and Γ acts on L̃ by acting on the second
coordinate of A−N × Γ .

In that context, we recall the notion of holonomy groupoid [11, p. 58], restricted to a
transversal. Given a foliated space S over L, fix a point w ∈ L, and let F be its fiber. The
holonomy groupoid has objects F , and has a morphism from f ∈ F to f ′ ∈ F for every
path α in S from f to f ′. Two paths α,α′ are identified if they have the same holonomy,
i.e., if both start at f , end at f ′, and α(α′)−1 induces by parallel transport the identity of
F in the neighbourhood of f .

Proposition 5.8. The holonomy groupoid of the foliation, restricted to a transversal, is the
groupoid of germs G(Π) of Π .
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Proof. Fix a point w ∈ L(Π); then its fiber in S(Π) is wAN. The parallel transport along
α in a leaf of S corresponds to the action of Γ on AN ∼=wAN. Two paths α,α′ :wv→wv′
are equivalent if and only if α(α′)−1 is in the stable homotopy group of v. �

6. Automata from orbispaces

Let L be a connected orbispace with a d-to-1 covering map f :L→ L.
First, we may obtain a profinite group Γ̄ as follows: pick a base point ∗ ∈ L. For

any n ∈ N, set An = f−n(∗). Consider the space Ln = {(g0 ∈ L,g1 ∈ f−1(g0), . . . , gn ∈
f−1(gn−1))}. Then L ∼= Ln, by projection on the last coordinate, and we may also view
Ln as a degree-dn covering space over L, with f n :Ln → L realized as projection on the
first coordinate.

Also, f n can be viewed as a bundle with structure group the isometry group of an n-
level #A-regular rooted tree. Consider the associated principal bundle

Yn =
{(

g ∈ L,p :
n⋃

i=0

f−i (g)→
n⋃

i=0

Ai a rooted tree isometry

)}
,

with covering map f̃n the projection on the first coordinate; let Zn be the connected
component of (∗,1, . . . ,1) in Yn. Then Zn is a Galois covering, with Galois group Γn.
Therefore f̃ :Yn+1 → Yn given by (g,p) �→ (g,p|⋃n

i=0 f−i (g)) induces a projective system

f̃ :Γn+1 → Γn. Set Γ̄ (L)= lim←−Γn.

Theorem 6.1. Let Π be nuclear and spherically transitive. Then Γ̄ (L(Π)) is the closure
of 〈Π〉 in Aut(A∗).

Proof. First, we remember by Lemma 2.10 that the closure of 〈Π〉 in Aut(A∗) is the inverse
limit of its finite quotients acting on An. This finite quotient is nothing but the permutation
group Γn in its action on An. �

We now seek a discrete group associated with L, and assume the geometric realization
|L| of L is arcwise connected. By Proposition 3.5, the map f induces a d-to-1 covering
map |f | : |L| → |L|.

We place ourselves in the following situation, that of an arcwise connected space X en-
dowed with a d-to-1 covering map f :X→X. Some of the interesting examples however,
come from a slightly more general situation, where f needs only be a branched covering.
This reduces to the previous situation by removing from X the branching locus, as well as
all its iterated direct and inverse images.

We actually do not need to remove the inverse images of the branching locus; if we
remove the forward images, we are led to consider a space X with a map f defined on a
dense subset of X, and satisfying the unicity of path lifting property.

Here is the procedure for constructing an automaton Π(X) out of our data [12, Propo-
sition 5.2.2]. Pick a base point x ∈X and choose for all y ∈ f−1(x) a path �y from x to y.
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Let K � π1(X,x) be the subgroup consisting of all paths that induce the identity permu-
tation on f−n(x), for all n ∈ N. Our automaton is given as follows: its set of states Q is
a subset of π1(X,x) that generates π1(X,x)/K , and satisfies the condition (6) below. Its
alphabet is A = f−1(x). Given a ∈ A and q ∈Q, consider the preimage γ of the path q

with γ (0)= a. The output function of Π(X) is σ(a, q)= γ (1), and its transition function
maps (a, q) to a path τ(a, q) ∈Q congruent mod K to �aγ �−1

γ (1). We therefore require for
all a ∈A and q ∈Q:

�aγ �−1
γ (1)K ∩Q �= ∅. (6)

Note that we may on one hand take Q= π1(X,x); however we wish usually the set of
states to be finite, in which case (6) expresses a nontrivial restriction on Q.

Definition 6.2. [12, Chapter 5] We call Π(X) the automaton constructed above, and, for L

a groupoid, we set Π(L)=Π(|L|). The automaton Π(X) constructed depends of course
on the choices made but we will show that the associated group 〈Π(X)〉 does not.

The group 〈Π(X)〉 is called the iterated monodromy group of f , written IMG(f ).

The following proposition shows that the automaton associated with a topologically
expanding map is contracting. A metric version was already proven in [12, Theorem 5.5.3].

Definition 6.3. Let X be a topological space and f :X→X a continuous map. It is topo-
logically expanding if there exists an open subset U ⊂X ×X such that

⋂
n�0 f−n(U)=

Δ, where Δ = {(x, x) | x ∈ X} is the diagonal and f extends naturally to a function
X×X→X×X.

If Y ⊂X ×X contains the diagonal, let us write Y0 for the connected component of Y

containing the diagonal. We then say f is smoothly topologically expanding if there exists
a U ⊂X ×X as above, satisfying furthermore f−1(U)0 ⊂ U where f−1(U)0 denotes the
connected component of f−1(U) containing Δ.

Proposition 6.4. If X is compact, locally arcwise connected, and f is a smoothly topolog-
ically expanding degree-d cover, then the automaton Π(X) is contracting.

Proof. Set A= {1, . . . , d}. Let T be the standard d-regular rooted tree: it is the simplicial
realization of the graph with vertices A∗ and an edge between w and wa for all w ∈ A∗,
a ∈A. The standard compactification of T is T̄ = T ∪ ∂T , with ∂T =AN.

We assume the automaton Π(X) has been constructed, with choices of basepoint ∗ and
connecting paths {�a}. The paths �a extend to paths �w starting at ∗, defined as follows.
For w ∈ A∗, a ∈ A, set �wa = �w�̃w,a , where �̃w,a is the |w|th iterated f -preimage of �a

starting at �w(1). This defines an embedding T → X, mapping the vertex w ∈ T to the
extremity of �w . Furthermore, for each w ∈ AN we have a path �w : R�0 → X starting
at ∗.

We show that these paths are actually finite, i.e., the map T →X extends to T . For this
purpose, let Y ⊂X× ∂T be the space of accumulation points of rays �w:

Y = {(x,w) ∈X× ∂T | x = lim�w(ti) for a sequence ti →∞}.
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Then Y fibers over ∂T , with connected fibres since the �w are connected and X is compact.
We set

Z = (Y ×∂T Y )∩ (U × ∂T ).

By assumption, Z is stable under f × f × ‘shift,’ so since f is expanding Z ⊂Δ× ∂T .
It follows that the fibres of Y → ∂T are discrete, so Y ∼= ∂T . We have shown that each
ray �w has a unique accumulation point lim(�w). This proves that the map T →X extends
to T̄ .

The relation (x, y) ∈ U means that “x and y are close.” We need stronger notions of
closeness, for which we introduce the notation (x, y) ∈ 1

k
U , for k ∈ N. By definition, if V

is an open neighbourhood of Δ in X ×X, then 1
k
V denotes a choice of an open subset of

X×X containing the diagonal and satisfying the condition:

if (xi, xi+1) ∈ 1

k
U whenever 0 � i < k, then (x0, xk) ∈ V .

Let us show that such sets always exist. For this, fix V and k, and let (Yn) be a decreasing
sequence (or net) of compact neighbourhoods of the diagonal Δ satisfying

⋂
Yn =Δ. Then

p−1
12 (Yn) ∩ · · · ∩ p−1

k,k+1(Yn)↘Δ(k+1), where Δ(k+1) is the diagonal in Xk+1, and pij are
the projections on two coordinates. Since images commute with decreasing intersections
of compact sets, we get Zn = p1,k+1(p

−1
12 (Yn)∩ · · · ∩p−1

k,k+1(Yn))↘Δ. For n big enough,

we will then have Zn ⊂ V , and we set 1
k
V = (Yn)

◦ for such a choice of n.
If γ : [0,L] →X is a path and V is an open neighbourhood of Δ, we will write γ � V

to mean (γ (t), γ (t ′)) ∈ V for all t, t ′ ∈ [0,L]; more generally, if Y ⊂ X, we write Y � V
to mean (y, y′) ∈ V for all y, y′ ∈ Y .

If w ∈ T , the cone C(w) of w is the image in X of the subset spanned by wA∗ ∪wAN

in T̄ .
Set V = 1

3
1
2U . We may choose R ∈N such that C(w) � V for all w ∈AR . To construct

such an R, consider the function h : ∂T →N,

h(w) 	 min
{
M ∈N | C(w1 . . .wM) � V

}
.

This function is continuous on a compact, so is bounded. Set R =maxh(∂T ).
Define also N,N ′,K ′ ⊂ π1(X,∗) by

N = {�vρ�−1
w | |v|, |w|� R and ρ � V

}
,

N ′ =
{
�vρ�−1

w | |v| = |w| =R and ρ � 1

2
U
}
,

K ′ = {�wρ�−1
w | ρ � U

}
.

First, we claim that the elements of K ′ act trivially on the tree of preimages of ∗, and
therefore are trivial in 〈Π(X)〉. Take γ ∈K ′. Then γ is a “balloon” ρ � U , attached by a
“string” �w to ∗. Since f−1(U)0 ⊂ U , an f -preimage of ρ is again of the form “balloon in
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U attached by a string.” They are all loops, so γ acts trivially by monodromy on f−1(∗).
Iterating this procedure, we see that γ acts trivially on f−n(∗) for all n ∈N.

We next claim that N ⊂ N ′. Take γ ∈ N , γ = �vρ�−1
w . Set v′ = v1 . . . vR and w′ =

w1 . . .wR . Let �v′,v be the image in X of the path from v′ to v in T , and similarly for �w′,w .
Then �v′,v, ρ, �−1

w′,w � V , so ρ′ 	 �v′,vρ�−1
w′,w � 1

2U , and we can write γ = �v′ρ′�−1
w′ ∈N ′.

We claim that N ′ is finite modulo K ′. Indeed take two elements γ, γ ′ ∈ N ′ with the
same v,w: γ = �vρ�−1

w ,γ ′ = �vρ
′�−1

w . Their quotient is a balloon �vρ(ρ′)−1�−1
v . It is in

K ′ since ρ(ρ′)−1 � U . We are left with finitely many choices for v,w ∈AR .
Finally, we claim that for any γ ∈ π1(X,∗) there exists n � R such that all f−n-

preimages of γ are contained in V . Indeed partition γ in small segments γ1, . . . , γk such
that γi � U for all i ∈ {1, . . . , k}. Since f−n(U) converges to Δ, there exists n ∈ N such
that f−n(U) � 1

k
V . The preimages of γi are in 1

k
V , so all preimages of γ belong to V , and

therefore define an element of N .
We have shown that N contains the nucleus and that its image in 〈Π(X)〉 is finite. �
Note that this proposition applies in particular if f ∈ C(z) and the postcritical orbit of

f does not intersect the Julia set of f ; one then takes for X the Julia set of f [5].
Let A,A′ be two sets of same cardinality. In the following definition, we relax the

definition of automata in allowing the input and output alphabets to be respectively A

and A′. More precisely, the transition function remains a function τ :A × Q→ Q, but
the output function becomes a function σ :A × Q → A′. Such an automaton, with an
initial state q0 ∈Q, defines a tree homomorphism A∗ → (A′)∗, which is an isomorphism
precisely when σ(−, q) is a bijection for all q ∈Q. The states9 of φ :A∗ → (A′)∗ are the
maps φ′ :A∗ → (A′)∗ given by φ(vw) = v′φ′(w) for some v ∈ A∗ and any w ∈ A∗. The
set of states of the map q0 :A∗ → (A′)∗ is a subset of Q.

Definition 6.5. Two automata Π and Π ′ on alphabets A and A′ are equivalent if #A= #A′,
and there exists a tree isomorphism φ :A∗ → (A′)∗ given by a finite automaton in the sense
described above, such that the states of φ are all of the form φg for some g ∈ 〈Π〉, and

φ ◦ 〈Π〉 ◦ φ−1 = 〈Π ′〉.

Proposition 6.6. Let (X,f ) be a space with a covering and let Π , Π ′ be two automata
constructed as above from possibly different data x, �y,Q and x′, �′y,Q′. Assume Π is
contracting. Then Π and Π ′ are equivalent.

Proof. Since equivalence of automata is transitive, we may assume Q ⊂ π1(X,x) and
Q′ = π1(X,x′). Choose a path s from x to x′ and use it to identify π1(X,x) with π1(X,x′).
We get an injection

sQ : 〈Q〉 ⊂ π1(X,x)−→∼ π1(X,x′)= 〈Q′〉.

9 By abuse of notation, we refer to the states of φ to mean the states of an automaton defining the map φ.
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The path s also induces a bijection between the preimages A= f−1(x) and A′ = f−1(x′),
and similarly between higher-order preimages of x and x′, by lifting appropriately s

through powers of f . The paths �y can be used to identify the tree of preimages of x

with A∗ and similarly to identify the preimages of x′ with (A′)∗. Composing these three
tree isomorphisms gives an isomorphism sA :A∗ → (A′)∗.

For all a ∈ A, let sa be the f -preimage of s starting at a, and call its other extremity
a′ ∈A′. Define ga ∈ π1(X,x) by

ga = �asa�
−1
a′ s−1.

Define recursively φ :A∗ → (A′)∗ by φ(aw) = a′φ(gaw). Then φ = sA, and since Π is
contracting, φ is automatic by [12, Corollary 2.11.7]. Furthermore, the states of φ are
clearly of the form φg for some g ∈ 〈Π〉; for instance, on the first level, they are precisely
the {φga}.

The best way to understand the definition of φ is as follows: forget for an instant that s

is fixed, and denote the resulting φ by φs . Then

φs ◦ ga = φgas = φ
�asa�−1

a′
,

in accordance the transition function defined above (6).
Clearly the actions of 〈Q〉 and 〈Q′〉 on A∗ and (A′)∗ are intertwined by sQ and sA.

We are left to show that the induced map sΠ : 〈Π〉 → 〈Π ′〉 is an isomorphism, where
〈Π〉 and 〈Π ′〉 are the images of 〈Q〉 and 〈Q′〉 in Aut(A∗) and Aut((A′)∗), respectively. The
injectivity of sΠ follows from that of sQ. To show the surjectivity of sΠ , let g′ ∈ Aut((A′)∗)
be in 〈Π ′〉, let γ ′ ∈ 〈Q′〉 = π1(X,x′) be a path representing it, and set γ = sγ ′s−1 ∈
π1(X,x). We need to find a word in Q that acts on A∗ the same way that γ does; such a
word exists because Q was assumed to generate the image of π1(X,x) in Aut(A∗). �

Consider a manifold X with a branched covering map f , and let P be the smallest
closed subset of X containing the critical values of f and f (P ). If P does not disconnect X

we may consider the space X′ =X\P , with a partially defined covering map f̃ :X′ ��� X′;
we still have the unique lifting property for loops via f̃ , so the construction of IMG(f ) is
unaffected by the fact that f̃ is not defined everywhere.

We may also consider the space X′′ = X \⋃m,n∈N
f−mf n(critical points), now with

an everywhere defined covering map. An important source of examples is given by X the
Riemann sphere, and f a rational map—see for instance [2].

Theorem 6.7. If Π is nuclear and smooth, then Π is equivalent to Π(L(Π)); more pre-
cisely, the data x, �y,Q may be chosen in Definition 6.2 so that Π =Π(L(Π)).

Recall the notion of critical edge from Definition 5.1.

Lemma 6.8. Pick x ∈ |L(Π)|0 and γ ∈ π1(|L(Π)|1, x). Assume that γ is transverse to the
midpoints of the critical edges. Let u ∈Q∗ be the sequence of last states φ0 of the critical
edges (α,φ) crossed by γ . Then the action of γ on the tree of preimages of x only depends
on u.

Proof. Let n > 0 be an integer. We want to show that the action of γ on f−n(x) only
depends on u. Let y ∈ f−n(x) be a preimage and γ̃ be the unique lift of γ starting at y. As
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before, |L(Π)| has a tiling by tiles Tw , for all w ∈An. The points where γ̃ crosses from a
tile to another are exactly the preimages of the points where γ crosses a critical edge. So if
t ∈ [0,1] is one of these points and γ̃ (t − ε) ∈ Tw for small ε > 0, then γ̃ (t + ε) ∈ Tσ(w,q),
where q = φ0 is the last state of the critical edge (α,φ) on which γ (t) lies. By induction,
we get γ̃ (1) ∈ Tσ(w,u) where w ∈An is such that y = γ̃ (0) belongs to Tw . This shows that
γ̃ (1) is the unique preimage of x lying in Tσ(w,u) and is therefore determined by u and w

only. �
Proof of Theorem 6.7. We show that a judicious choice of base point, connecting paths
and generating set for |L(Π)| gives Π(|L(Π)|) Π .

We start with any base point x ∈ |L(Π)|0. For every q ∈Q \ {1}, let (αq,φq) :αq → βq

be a critical edge with (φq)0 = q . Such an edge can be constructed inductively using the
expansion rule: (αq)n−1 	 e(φq)n , (φq)n−1 	 v(φq)n . Let γ 1

q :x → αq and γ 2
q :βq → x be

paths that cross no critical edge. These paths are images of paths in the standard tile,
which is connected by Proposition 4.7. We let Q̃ be the set of paths γq 	 γ 1

q (αq,φq)γ 2
q ⊂

π1(|L(Π)|, x), parametrized by q ∈Q. The �y ’s are taken to be paths from x to y ∈ f−1(x)

that do not cross any critical edge. These paths give the natural identification of the tree of
preimages of x with A∗, namely y ∈ f−n(x) �→ y−ny−n+1 . . . y−1 ∈A∗.

We show that the γq generate the image of π1(|L(Π)|, x) in Aut(A∗). Let γ be any loop.
By transversality, we may assume that it satisfies the hypothesis of Lemma 6.8. We get a
word w = w1 . . .wr ∈Q∗ and by Lemma 6.8, γw1 . . . γwr acts the same way as γ on A∗,
which is what we wanted.

So we only need to show that Π(|L(Π)|)  (A,Q) has same output and transition
functions as Π . We claim that if y is the preimage of x corresponding to a, then σ(y, γq)

is the preimage of x corresponding to σ(a, q). Letting γ̃ be the lift of γq starting at y, the
argument of Lemma 6.8 shows σ(y, γq)= γ̃ (1) ∈ Tσ(a,q), which proves our claim.

Last, we need to show that �yγ̃ �−1
γ̃ (1)

acts the same way on A∗ as τ(a, q) does. By

Lemma 6.8 it is enough to show the following: �yγ̃ �−1
γ̃ (1)

has at most one critical edge.
If it has one, its last state is τ(a, q). And if it does not then τ(a, q) = 1. Recall that the
�y ’s were chosen without critical edges and that γ̃ is a preimage of γ , which has a unique
critical edge (αq,φq). So the only possible critical edge of �yγ̃ �−1

γ̃ (1)
is the preimage of

(αq,φq). Let us call (α̃, φ̃) that preimage. We need to show φ̃0 = τ(a, q); this is clear
since φ̃−1 = (φq)0 = q and α̃ is in the same tile Ta as y, which implies α̃−1 = a.

If Π(|L(Π)|) had been built using different data, then by Proposition 6.6, we would
still have Π equivalent to Π(|L(Π)|). �
Theorem 6.9. If Π and Π ′ are nuclear and equivalent, then (L(Π),f ) and (L(Π ′), f ′)
are Morita equivalent.

If furthermore Π and Π ′ are smooth, then Π and Π ′ are equivalent if and only if
(L(Π),f ) and (L(Π ′), f ′) are Morita equivalent.

Proof. Let φ0 :A∗ → (A′)∗ be an equivalence between Π and Π ′. Denote 〈Π〉 by Γ , and
set Φ = φ0Γ . The Morita equivalence is given by
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P = {(α,φ,α′) ∈A−N ×Φ−N × (A′)−N | φ(n)
(
α(n)w

)= α′(n)φ(n+ 1)(w)

for all w ∈AN and n <−1, and φ(−N) is finite
}
,

with source and target maps sP (α,φ,α′)= α and tP (α,φ,α′)= α′.
We first show that P is compact; this is because W = ⋃

(α,φ,α′)∈P φ(−N) is finite;
we actually show that W is contained in the Cartesian product of the set of states of φ

and the nucleus of Π . Fix some p = (α,φ,α′) ∈ P , and consider the set of g ∈ Γ that
satisfy φ0g = φ(n) for some n < 0. Since Π is nuclear, for every such g there exists
a k ∈ N with τ(Ak, g) ⊆ Q. Since there are finitely many such g’s associated with p,
there is a common such k for all g’s. Fix now n < 0, and write φ(n) = τ(w,φ(n − k))

with w = α(n − k) . . . α(n − 1). Write φ(n − k) = φ0g
′ for a g′ ∈ Γ . Then φ(n) =

τ(w,φ0g
′) = τ(σ (w,g′),φ0)τ (w,g′). We observe that τ(σ (w,g′),φ0) is a state of φ0,

and that τ(w,g′) ∈ τ(Ak, g′)⊆Q, which proves that W is finite; therefore P is closed in
the compact (A×W ×A′)−N, so is compact.

We next show that sP and tP are onto. Choose any α ∈A−N. Then for every m < 0, there
exists (α,φ,α′) ∈A−N×Φ−N× (A′)−N satisfying φ(n)(α(n)w)= α′(n)φ(n+ 1)(w) for
all w ∈AN and n � m; for instance, set φ(m)= φ0. This determines φ(n) and α′(n) for all
n � m. Choose the φ(n),α′(n) arbitrarily for n < m. Since P is compact, there exists an
accumulation point of the above choices as m→−∞, and sP is onto. The same argument
applies to tP .

We then show that L(Π) � P � P−1 � L(Π ′) is a groupoid. It suffices to check that
given x ∈ L(Π) and y, z ∈ P with t (x) = s(y), the product xy ∈ P is well-defined; if
t (y) = t (z) then yz−1 ∈ L(Π) is well-defined; and if s(y) = s(z) then y−1z ∈ L(Π ′) is
well-defined. Write x = (α,φ) and y = (β,ψ,β ′). Then xy = (α,φψ,β ′) and (φψ)(−N)

is finite because both φ(−N) and ψ(−N) are finite, so xy ∈ P .
Similarly, write z = (α,φ,β ′). Then yz−1 = (β,ψφ−1, α); and ψ(n)φ(n)−1 =

φ0g1g
−1
2 φ−1

0 ∈ Γ assumes finitely many values, so yz−1 ∈ L(Π).
Write also z= (β,φ,α′). Then y−1z= (β ′,ψ−1φ,α′); and ψ(n)−1φ(n)= g−1

1 g2 ∈ Γ

assumes finitely many values, so y−1z ∈ L(Π).
Finally, the shift map clearly extends to P , by deleting the (−1)st entry of α, φ and α′.
Conversely, assume that Π and Π ′ are nuclear and smooth, and let P be a Morita

equivalence between G= L(Π) and G′ = L(Π ′). Set G′′ =G�P �P−1 �G′. We obtain
a diagram |G| ↪→ |G′′| ←↩ |G′|, and the inclusions commute with the coverings f , f ′ and
f ′′. By the second part of Theorem 6.7, we may pick data x, �y,Q such that Π(|G|)=Π ,
and similarly data x′, �y′ ,Q′ such that Π(|G′|)=Π ′. We may then push these data forward
into |G′′|, obtaining two sets of data again giving Π and Π ′, respectively. It now follows
from Proposition 6.6 that Π and Π ′ are equivalent automata. �

7. Examples

This section describes some examples of automata and their associated limit spaces. We
start by exhibiting various automata that fail to satisfy the various conditions: contraction,
smoothness, etc. We then describe the favorable situation of the automaton associated to
the covering f (z)= z2 − 1 of the Riemann sphere.
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We will describe the group G of the automaton by giving its decomposition map
ψ :G→G !SA on generators of G. The associated automaton can be recovered by taking
as states the generators of G, as alphabet A, and taking a transition from state q to state q ′
with input a and output a′ precisely when ψ(q)= (r,π) with r(a)= q ′ and π(a)= a′.

The automaton corresponding to this description can be obtained by drawing square
tiles with labels the input and output alphabet letters and states, by the procedure described
in Section 2.1.

7.1. The Lamplighter group

Here, as in the next two examples, A = {0,1} and σ = (0,1) is the nontrivial element
of SA.

The Lamplighter group is the group G= (Z/2) !Z=⊕
Z
(Z/2)�Z. It may be generated

by an automaton as follows: G = 〈a, b〉 with ψ(a) = (a, b) and ψ(b) = (b, a)σ . This
automaton is not nuclear; indeed it is not even contracting, since a has infinite order and
the projection of ψn(a) on the first vertex is a. Its square description is shown in Fig. 4.

This automaton representation of G was used by Grigorchuk and Żuk in [8] to compute
the �2 spectrum of the simple random walk on G.

The identification of G with the automaton can be understood as follows: identify the
boundary of the tree AN with F2[[t]], under the map (ai) �→∑

ait
i . Then a and b identify

respectively with the affine maps f �→ (1+ t)f and f �→ (1+ t)f +1 of F2[[t]]. Therefore
G identifies with the maps of the form f �→ (1 + t)nf + p for some n ∈ Z and p ∈
F2[1+ t, (1+ t)−1].

7.2. The Baumslag–Solitar group

Let m,n be two integers. The Baumslag–Solitar group Gm,n is defined by its presenta-
tion

Gm,n =
〈
a, t | t−1amt = an

〉
.

It is residually finite precisely when m = ±n or m = ±1 or n = ±1. If m = 1, it may be
represented by affine transformations as a(X)=X+ 1 and t (X)= nX.

The group G1,3 may be generated by an automaton as follows: G = 〈a, b, c〉 with
ψ(a)= (a, b) and ψ(b)= (a, c)σ and ψ(c)= (b, c). Again this automaton is not nuclear.
Its square description is shown in Fig. 5.

The identification of G with the automaton can be understood as follows: identify the
boundary of the tree AN with Z2, under the map (ai) �→∑

ai2i . Then a, b and c identify
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respectively with the affine maps X �→ 3X, X �→ 3X + 1 and X �→ 3X + 2. Therefore G

identifies with the maps of the form X �→ 3nf + p for some n ∈ Z and p ∈ Z[1/3].
The similarity between the lamplighter and Baumslag–Solitar groups is not accidental;

a common construction of G1,m and (Z/q) !Z by automata is described in [4].

7.3. The odometer

Again identify the boundary AN of the tree with Z2, and consider the subgroup Z

of Z2. This cyclic group may be generated by an automaton as follows: G = 〈τ 〉 with
ψ(τ)= (ε, τ )σ , where as before ε denotes the identity state. The associated automaton is
contracting, with nucleus {ε, τ, τ−1}. Its square description is shown in Fig. 6.

The limit space L(Π) is I/{0N = 1N} with I as in Lemma 3.6, and its topological
quotient L(Π)� is homeomorphic to the circle. The standard tile is I and its topological
quotient is [0,1]. The topological quotient of the associated solenoid is the standard 2-adic
solenoid: the inverse limit of

· · · S1
( )2

S1
( )2

S1 .

We consider in the next three examples some contracting actions which exhibit various
“pathologies.”

7.4. A nonrecurrent example

Take now A = {0,1,2}, with σ = (0,1,2) a three-cycle, and consider the action of Z

defined as follows: G= 〈τ 〉, with ψ(τ)= (ε, τ, τ )σ . The associated automaton is contract-
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ing, with nucleus {ε, τ±1, τ±2}. The square description of its nucleus is shown in Fig. 7 (we
omit the squares for the state ε, which have vertical labels ε and equal horizontal labels).

This group is not recurrent: indeed the stabilizer of a vertex (say 0) is 〈τ 3〉, and its
projection on the subtree 0A∗ is 〈τ 2〉.

The limit space L(Π)� is the standard 2-adic solenoid. In particular, it is connected,
but not arcwise connected. Its self-covering is the “triple-the-angle” map.

7.5. A nonsmooth example

Take again A = {0,1,2} and σ = (0,1,2), and consider the action of Z defined as
follows: G= 〈τ 〉, with ψ(τ)= (τ, τ−1, τ )σ . The associated automaton is contracting, with
nucleus {ε, τ±1, τ±2}. The square description of its nucleus is shown in Fig. 8.

The stabilizer of a vertex (say 0) is 〈τ 3〉, which projects to G on the subtree 0A∗; so G

is recurrent.
The minimal automaton generating G, with set of states Q= {ε, τ, τ−1}, is not smooth.

However, since ψ(τ 2)= (ε, ε, τ 2)σ 2, the subgroup 〈τ 2〉 is smooth.
The limit space L(Π)� is a circle, but |L(Π)| looks more like a Möbius strip. The

three tiles of |L(Π)| project to the three overlapping intervals [0,2π/3], [2π/3,π/3] and
[π/3,0] of the circle (see Fig. 9).

7.6. A more complicated nonsmooth example

Take again A = {0,1,2} and σ = (0,1,2), and consider the action of Z defined as
follows: G = 〈τ 〉, with ψ(τ) = (τ 2, ε, τ−1)σ . The associated automaton is contracting,
with nucleus {ε, τ±1, τ±2}. The square description of its nucleus is shown in Fig. 10.

The stabilizer of a vertex (say 0) is 〈τ 3〉, which projects to G on the subtree 0A∗; so G

is recurrent.
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Fig. 9.

The automaton generating G is again nonsmooth, but this time in an essential way:
there is no element of the nucleus sending 0 to 1 and projecting to a power of the trivial
state. Indeed the only element with that property is τ−5 and, since it does not belong to
the nucleus, there is no (bounded-length) path in |L(Π)| between w0 and w′1 for any
w,w′ ∈A−N.

The limit space L(Π) is therefore connected, but not arcwise connected. Its topological
quotient is as before a circle, since the group is recurrent. This example illustrates how the
property of being arcwise connected is not invariant under Morita equivalence.

The topological quotient of the tile is the closure of the union of countably many closed
intervals. Its boundary is a Cantor set.
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Fig. 11.

In Fig. 11 we represent the tiling of the circle (drawn as a horizontal interval) by three
copies of the standard tile. We cross each copy of the tile by an interval in order to make
the picture more legible, and draw each copy in a different tint.

7.7. The “basilica group”

This highly nontrivial example of group served as a motivation for the study of iter-
ated monodromy groups and their general properties. It is defined, with A = {0,1} and
σ = (0,1), as follows: G= 〈a, b〉, with ψ(a)= (ε, b)σ and ψ(b)= (ε, a). The associated
automaton is contracting, with nucleus {ε, a±1, b±1, a−1b, b−1a}.

The group G is torsion-free, amenable, but cannot be obtained from groups of subex-
ponential growth via direct limits, extensions, subgroups and quotients [3]. It was the first
example with such a property. More details on G can be found in [7].

The topological quotient of the limit space is the Julia set of the complex map f (z)=
z2 − 1.
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The odometer is conjugate, within AutA∗, to the subgroup 〈a−1b〉 of G. This explains
that the limit space of G is a quotient of the limit space of the odometer.
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