9 research outputs found

    Effects of coronavirus disease pandemic on tuberculosis notifications, Malawi

    Get PDF
    The coronavirus disease (COVID-19) pandemic might affect tuberculosis (TB) diagnosis and patient care. We analyzed a citywide electronic TB register in Blantyre, Malawi and interviewed TB officers. Malawi did not have an official COVID-19 lockdown but closed schools and borders on March 23, 2020. In an interrupted time series analysis, we noted an immediate 35.9% reduction in TB notifications in April 2020; notifications recovered to near prepandemic numbers by December 2020. However, 333 fewer cumulative TB notifications were received than anticipated. Women and girls were affected more (30.7% fewer cases) than men and boys (20.9% fewer cases). Fear of COVID-19 infection, temporary facility closures, inadequate personal protective equipment, and COVID-19 stigma because of similar symptoms to TB were mentioned as reasons for fewer people being diagnosed with TB. Public health measures could benefit control of both TB and COVID-19, but only if TB diagnostic services remain accessible and are considered safe to attend.Peer reviewe

    Prevalence of bacteriologically-confirmed pulmonary tuberculosis in urban Blantyre, Malawi 2019-20: substantial decline compared to 2013-14 national survey

    Get PDF
    Recent evidence shows rapidly changing tuberculosis (TB) epidemiology in Southern and Eastern Africa, with need for subdistrict prevalence estimates to guide targeted interventions. We conducted a pulmonary TB prevalence survey to estimate current TB burden in Blantyre city, Malawi. From May 2019 to March 2020, 115 households in middle/high-density residential Blantyre, were randomly-selected from each of 72 clusters. Consenting eligible participants (household residents ≥ 18 years) were interviewed, including for cough (any duration), and offered HIV testing and chest X-ray; participants with cough and/or abnormal X-ray provided two sputum samples for microscopy, Xpert MTB/Rif and mycobacterial culture. TB disease prevalence and risk factors for prevalent TB were calculated using complete-case analysis, multiple imputation, and inverse probability weighting. Of 20,899 eligible adults, 15,897 (76%) were interviewed, 13,490/15,897 (85%) had X-ray, and 1,120/1,394 (80%) sputum-eligible participants produced at least one specimen, giving 15,318 complete cases (5,895, 38% men). 29/15,318 had bacteriologically-confirmed TB (189 per 100,000 complete-case (cc) / 150 per 100,000 with inverse weighting (iw)). Men had higher burden (cc: 305 [95% CI:144–645] per 100,000) than women (cc: 117 [95% CI:65–211] per 100,000): cc adjusted odds ratio (aOR) 2.70 (1.26–5.78). Other significant risk factors for prevalent TB on complete-case analysis were working age (25–49 years) and previous TB treatment, but not HIV status. Multivariable analysis of imputed data was limited by small numbers, but previous TB and age group 25–49 years remained significantly associated with higher TB prevalence. Pulmonary TB prevalence for Blantyre was considerably lower than the 1,014 per 100,000 for urban Malawi in the 2013–14 national survey, at 150–189 per 100,000 adults, but some groups, notably men, remain disproportionately affected. TB case-finding is still needed for TB elimination in Blantyre, and similar urban centres, but should focus on reaching the highest risk groups, such as older men

    Evaluating the relationship between ciprofloxacin prescription and non-susceptibility in Salmonella Typhi in Blantyre, Malawi: an observational study

    Get PDF
    Background Ciprofloxacin is the first-line drug for treating typhoid fever in many countries in Africa with a high disease burden, but the emergence of non-susceptibility poses a challenge to public health programmes. Through enhanced surveillance as part of vaccine evaluation, we investigated the occurrence and potential determinants of ciprofloxacin non-susceptibility in Blantyre, Malawi. Methods We conducted systematic surveillance of typhoid fever cases and antibiotic prescription in two health centres in Blantyre, Malawi, between Oct 1, 2016, and Oct 31, 2019, as part of the STRATAA and TyVAC studies. In addition, blood cultures were taken from eligible patients presenting at Queen Elizabeth Central Hospital, Blantyre, as part of routine diagnosis. Inclusion criteria were measured or reported fever, or clinical suspicion of sepsis. Microbiologically, we identified Salmonella enterica serotype Typhi (S Typhi) isolates with a ciprofloxacin non-susceptible phenotype from blood cultures, and used whole-genome sequencing to identify drug-resistance mutations and phylogenetic relationships. We constructed generalised linear regression models to investigate associations between the number of ciprofloxacin prescriptions given per month to study participants and the proportion of S Typhi isolates with quinolone resistance-determining region (QRDR) mutations in the following month. Findings From 46 989 blood cultures from Queen Elizabeth Central Hospital, 502 S Typhi isolates were obtained, 30 (6%) of which had either decreased ciprofloxacin susceptibility, or ciprofloxacin resistance. From 11 295 blood cultures from STRATAA and TyVAC studies, 241 microbiologically confirmed cases of typhoid fever were identified, and 198 isolates from 195 participants sequenced (mean age 12·8 years [SD 10·2], 53% female, 47% male). Between Oct 1, 2016, and Aug 31, 2019, of 177 typhoid fever cases confirmed by whole-genome sequencing, four (2%) were caused by S Typhi with QRDR mutations, compared with six (33%) of 18 cases between Sept 1 and Oct 31, 2019. This increase was associated with a preceding spike in ciprofloxacin prescriptions. Every additional prescription of ciprofloxacin given to study participants in the preceding month was associated with a 4·2% increase (95% CI 1·8–7·0) in the relative risk of isolating S Typhi with a QRDR mutation (p=0·0008). Phylogenetic analysis showed that S Typhi isolates with QRDR mutations from September and October, 2019, belonged to two distinct subclades encoding two different QRDR mutations, and were closely related (4–10 single-nucleotide polymorphisms) to susceptible S Typhi endemic to Blantyre. Interpretation We postulate a causal relationship between increased ciprofloxacin prescriptions and an increase in fluoroquinolone non-susceptibility in S Typhi. Decreasing ciprofloxacin use by improving typhoid diagnostics, and reducing typhoid fever cases through the use of an efficacious vaccine, could help to limit the emergence of resistance

    Analysis of Transcriptional Variability in a Large Human iPSC Library Reveals Genetic and Non-genetic Determinants of Heterogeneity

    No full text
    Variability in induced pluripotent stem cell (iPSC) lines remains a concern for disease modeling and regenerative medicine. We have used RNA sequencing analysis and linear mixed models to examine the sources of gene expression variability in 317 human iPSC lines from 101 individuals. We found that ~50% of genome-wide expression variability is explained by variation across individuals and identified a set of expression quantitative trait loci that contribute to this variation. These analyses coupled with allele specific expression show that iPSCs retain a donor specific gene expression pattern. Network, pathway and key driver analyses showed that Polycomb targets contribute significantly to the non-genetic variability seen within and across individuals, highlighting this chromatin regulator as a likely source of reprogramming-based variability. Our findings therefore shed light on variation between iPSC lines and illustrate the potential for our dataset and other similar large-scale analyses to identify underlying drivers relevant to iPSC applications

    Omicron B.1.1.529 variant infections associated with severe disease are uncommon in a COVID-19 under-vaccinated, high SARS-CoV-2 seroprevalence population in MalawiResearch in context

    No full text
    Summary: Background: The B.1.1.529 (Omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the fourth COVID-19 pandemic wave across the southern African region, including Malawi. The seroprevalence of SARS-CoV-2 antibodies and their association with epidemiological trends of hospitalisations and deaths are needed to aid locally relevant public health policy decisions. Methods: We conducted a population-based serosurvey from December 27, 2021 to January 17, 2022, in 7 districts across Malawi to determine the seroprevalence of SARS-CoV-2 antibodies. Serum samples were tested for antibodies against SARS-CoV-2 receptor binding domain using WANTAI SARS-CoV-2 Receptor Binding Domain total antibody commercial enzyme-linked immunosorbent assay (ELISA). We also evaluated COVID-19 epidemiologic trends in Malawi, including cases, hospitalisations and deaths from April 1, 2021 through April 30, 2022, collected using the routine national COVID-19 reporting system. A multivariable logistic regression model was developed to investigate the factors associated with SARS-CoV-2 seropositivity. Findings: Serum samples were analysed from 4619 participants (57% female; 60% aged 18–50 years), of whom 878/3794 (23%) of vaccine eligible adults had received a single dose of any COVID-19 vaccine. The overall assay-adjusted seroprevalence was 83.7% (95% confidence interval (CI), 79.3%–93.4%). Seroprevalence was lowest among children <13 years of age (66%) and highest among adults 18–50 years of age (82%). Seroprevalence was higher among vaccinated compared to unvaccinated participants (1 dose, 94% vs. 77%, adjusted odds ratio 4.89 [95% CI, 3.43–7.22]; 2 doses, 97% vs. 77%, aOR 6.62 [95% CI, 4.14–11.3]). Urban residents were more likely to be seropositive than those from rural settings (91% vs. 78%, aOR 2.76 [95% CI, 2.16–3.55]). There was at least a two-fold reduction in the proportion of hospitalisations and deaths among the reported cases in the fourth wave compared to the third wave (hospitalisations, 10.7% (95% CI, 10.2–11.3) vs. 4.86% (95% CI, 4.52–5.23), p < 0.0001; deaths, 3.48% (95% CI, 3.18–3.81) vs. 1.15% (95% CI, 1.00–1.34), p < 0.0001). Interpretation: We report reduction in proportion of hospitalisations and deaths from SARS-CoV-2 infections during the Omicron variant dominated wave in Malawi, in the context of high SARS-CoV-2 seroprevalence and low COVID-19 vaccination coverage. These findings suggest that COVID-19 vaccination policy in high seroprevalence settings may need to be amended from mass campaigns to targeted vaccination of reported at-risk populations. Funding: Supported by the Bill and Melinda Gates Foundation (INV-039481)

    Metabolic network failures in Alzheimer's disease-A biochemical road map

    Get PDF
    IntroductionThe Alzheimer's Disease Research Summits of 2012 and 2015 incorporated experts from academia, industry, and nonprofit organizations to develop new research directions to transform our understanding of Alzheimer's disease (AD) and propel the development of critically needed therapies. In response to their recommendations, big data at multiple levels are being generated and integrated to study network failures in disease. We used metabolomics as a global biochemical approach to identify peripheral metabolic changes in AD patients and correlate them to cerebrospinal fluid pathology markers, imaging features, and cognitive performance.MethodsFasting serum samples from the Alzheimer's Disease Neuroimaging Initiative (199 control, 356 mild cognitive impairment, and 175 AD participants) were analyzed using the AbsoluteIDQ-p180 kit. Performance was validated in blinded replicates, and values were medication adjusted.Results Multivariable-adjusted analyses showed that sphingomyelins and ether-containing phosphatidylcholines were altered in preclinical biomarker-defined AD stages, whereas acylcarnitines and several amines, including the branched-chain amino acid valine and α-aminoadipic acid, changed in symptomatic stages. Several of the analytes showed consistent associations in the Rotterdam, Erasmus Rucphen Family, and Indiana Memory and Aging Studies. Partial correlation networks constructed for Aβ1–42, tau, imaging, and cognitive changes provided initial biochemical insights for disease-related processes. Coexpression networks interconnected key metabolic effectors of disease.DiscussionMetabolomics identified key disease-related metabolic changes and disease-progression-related changes. Defining metabolic changes during AD disease trajectory and its relationship to clinical phenotypes provides a powerful roadmap for drug and biomarker discovery.Analytical BioScience
    corecore