9 research outputs found

    Minimal treatment options with one-piece implants

    No full text
    The aim of this publication is to present case reports to show what is possible with pterygoid implants for the rehabilitation of edentulous space in the jaw (maxilla) while avoiding sinus lifts and bone grafting procedures. In addition, the added value of one-piece implants for screwed retention is elucidated

    Possibilistic keys

    Get PDF
    International audiencePossibility theory is applied to introduce and reason about the fundamental notion of a key for uncertain data. Uncertainty is modeled qualitatively by assigning to tuples of data a degree of possibility with which they occur in a relation, and assigning to keys a degree of certainty which says to which tuples the key applies. The associated implication problem is characterized axiomatically and algorithmically. Using extremal combinatorics, we then characterize the families of non-redundant possibilistic keys that attain maximum cardinality. In addition, we show how to compute for any given set of possibilistic keys a possibilistic Armstrong relation, that is, a possibilistic relation that satisfies every key in the given set and violates every possibilistic key not implied by the given set. We also establish an algorithm for the discovery of all possibilistic keys that are satisfied by a given possibilistic relation. It is shown that the computational complexity of computing possibilistic Armstrong relations is precisely exponential in the input, and the decision variant of the discovery problem is NP-complete as well as W[2]-complete in the size of the possibilistic key. Further applications of possibilistic keys in constraint maintenance, data cleaning, and query processing are illustrated by examples. The computation of possibilistic Armstrong relations and discovery of possibilistic keys from possibilistic relations have been implemented as prototypes. Extensive experiments with these prototypes provide insight into the size of possibilistic Armstrong relations and the time to compute them, as well as the time it takes to compute a cover of the possibilistic keys that hold on a possibilistic relation, and the time it takes to remove any redundant possibilistic keys from this cover

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore