7,397 research outputs found

    Quantum Andreev Map: A Paradigm of Quantum Chaos in Superconductivity. .

    Get PDF
    We introduce quantum maps with particle-hole conversion (Andreev reflection) and particle-hole symmetry, which exhibit the same excitation gap as quantum dots in the proximity to a superconductor. Computationally, the Andreev maps are much more efficient than billiard models of quantum dots. This makes it possible to test analytical predictions of random-matrix theory and semiclassical chaos that were previously out of reach of computer simulations. We have observed the universal distribution of the excitation gap for a large Lyapunov exponent and the logarithmic reduction of the gap when the Ehrenfest time becomes comparable to the quasiparticle dwell time

    On the Submillimeter Opacity of Protoplanetary Disks

    Full text link
    Solid particles with the composition of interstellar dust and power-law size distribution dn/da propto a^{-p} for a 3 lambda and 3 < p < 4 will have submm opacity spectral index beta(lambda) = dln(kappa)/dln(nu) approx (p-3) beta_{ism}, where beta_{ism} approx 1.7 is the opacity spectral index of interstellar dust material in the Rayleigh limit. For the power-law index p approx 3.5 that characterizes interstellar dust, and that appears likely for particles growing by agglomeration in protoplanetary disks, grain growth to sizes a > 3 mm will result in beta(1 mm) < ~1. Grain growth can naturally account for beta approx 1 observed for protoplanetary disks, provided that a_{max} > ~ 3 lambda.Comment: Submitted to ApJ. 17 pages, 6 figure

    High spatial resolution mid-infrared observations of the low-mass young star TW Hya

    Get PDF
    We want to improve knowledge of the structure of the inner few AU of the circumstellar disk around the nearby T Tauri star TW Hya. Earlier studies have suggested the existence of a large inner hole, possibly caused by interactions with a growing protoplanet. We used interferometric observations in the N-band obtained with the MIDI instrument on the Very Large Telescope Interferometer, together with 10 micron spectra recorded by the infrared satellite Spitzer. The fact that we were able to determine N-band correlated fluxes and visibilities for this comparatively faint source shows that MIR interferometry can be applied to a large number of low-mass young stellar objects. The MIR spectra obtained with Spitzer reveal emission lines from HI (6-5), HI (7-6), and [Ne II] and show that over 90% of the dust we see in this wavelength regime is amorphous. According to the correlated flux measured with MIDI, most of the crystalline material is in the inner, unresolved part of the disk, about 1 AU in radius. The visibilities exclude the existence of a very large (3-4 AU radius) inner hole in the circumstellar disk of TW Hya, which was required in earlier models. We propose instead a geometry of the inner disk where an inner hole still exists, but at a much reduced radius, with the transition from zero to full disk height between 0.5 and 0.8 AU, and with an optically thin distribution of dust inside. Such a model can comply with SED and MIR visibilities, as well as with visibility and extended emission observed in the NIR at 2 micron. If a massive planet was the reason for this inner hole, as has been speculated, its orbit would have to be closer to the star than 0.3 AU. Alternatively, we may be witnessing the end of the accretion phase and an early phase of an inward-out dispersal of the circumstellar disk.Comment: 13 pages, 9 figures, accepted by A&

    The impact of Scholasticism and Protestantism on Ulrich Huber’s views on constitutionalism and tyranny

    Get PDF
    Ulrich Huber’s (1636-1694) contribution to public law was initiated with his lectures on the general principles of constitutional law at Franeker. The fruits of his work culminated in his De Jure Civitatis. The era in which Huber produced this work was generally characterized by the emergence of rationalism and enlightenment in Dutch jurisprudence. More specifically Huber’s work reflects the influence of the transition from enlightened absolutism to democratic government based on the will of the subjects. His views on popular sovereignty culminated in Huber’s theory of limited government and resistance to tyranny. A study of the Latin text of Huber’s pioneering work reveals valuable perspectives on these trends in the transition of Dutch jurisprudence from scholasticism to enlightenment

    Young stars in Epsilon Cha and their disks: disk evolution in sparse associations

    Full text link
    (abridge) The nearby young stellar association Epsilon Cha association has an estimated age of 3-5 Myr, making it an ideal laboratory to study the disk dissipation process and provide empirical constraints on the timescale of planet formation. We combine the available literature data with our Spitzer IRS spectroscopy and VLT/VISIR imaging data. The very low mass stars USNO-B120144.7 and 2MASS J12005517 show globally depleted spectral energy distributions pointing at strong dust settling. 2MASS J12014343 may have a disk with a very specific inclination where the central star is effectively screened by the cold outer parts of a flared disk but the 10 micron radiation of the warm inner disk can still reach us. We find the disks in sparse stellar associations are dissipated more slowly than those in denser (cluster) environments. We detect C_{2}H_{2} rovibrational band around 13.7 micron on the IRS spectrum of USNO-B120144.7. We find strong signatures of grain growth and crystallization in all Epsilon Cha members with 10 micron features detected in their IRS spectra. We combine the dust properties derived in the Epsilon Cha sample with those found using identical or similar methods in the MBM 12, Coronet cluster, Eta Cha associations, and in the cores to disks (c2d) legacy program. We find that disks around low-mass young stars show a negative radial gradient in the mass-averaged grain size and mass fraction of crystalline silicates. A positive correlation exists between the mass-averaged grain sizes of amorphous silicates and the accretion rates if the latter is above ~10^{-9} Msun/yr, possibly indicating that those disks are sufficiently turbulent to prevent grains of several microns in size to sink into the disk interior.Comment: 17 pages, 18 figures, 6 tables, language revised; accepted to A&

    Feedhorn-Coupled TES Polarimeter Camera Modules at 150 GHz for CMB Polarization Measurements with SPTpol

    Get PDF
    The SPTpol camera is a dichroic polarimetric receiver at 90 and 150 GHz. Deployed in January 2012 on the South Pole Telescope (SPT), SPTpol is looking for faint polarization signals in the Cosmic Microwave Background (CMB). The camera consists of 180 individual Transition Edge Sensor (TES) polarimeters at 90 GHz and seven 84-polarimeter camera modules (a total of 588 polarimeters) at 150 GHz. We present the design, dark characterization, and in-lab optical properties of the 150 GHz camera modules. The modules consist of photolithographed arrays of TES polarimeters coupled to silicon platelet arrays of corrugated feedhorns, both of which are fabricated at NIST-Boulder. In addition to mounting hardware and RF shielding, each module also contains a set of passive readout electronics for digital frequency-domain multiplexing. A single module, therefore, is fully functional as a miniature focal plane and can be tested independently. Across the modules tested before deployment, the detectors average a critical temperature of 478 mK, normal resistance R_N of 1.2 Ω, unloaded saturation power of 22.5 pW, (detector-only) optical efficiency of ~ 90%, and have electrothermal time constants < 1 ms in transition
    • …
    corecore