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Quantum Andreev Map: A Paradigm of Quantum Chaos in Superconductivity
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We introduce quantum maps with particle-hole conversion (Andreev reflection) and particle-hole
symmetry, which exhibit the same excitation gap as quantum dots in the proximity to a superconductor.
Computationally, the Andreev maps are much more efficient than billiard models of quantum dots. This
makes it possible to test analytical predictions of random-matrix theory and semiclassical chaos that
were previously out of reach of computer simulations. We have observed the universal distribution of the
excitation gap for a large Lyapunov exponent and the logarithmic reduction of the gap when the
Ehrenfest time becomes comparable to the quasiparticle dwell time.
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predicts an excitation gap at the Thouless energy while On a Poincaré surface of section, the lead is represented
One-dimensional (1D) quantum mechanical models
with a chaotic classical limit were first studied by
Casati, Chirikov, Ford, and Izrailev in 1979 [1]. These
models have since developed into one of two paradigms
of quantum chaos [2,3]. The other paradigm is the 2D
billiard of irregular shape [4]. Two is the lowest number of
dimensions for nonintegrable (chaotic) dynamics in au-
tonomous systems, since a single constant of motion is
sufficient for integrability in 1D. The 1D models get
around this constraint through a periodically time-
dependent external force (‘‘kick’’), which eliminates the
energy as a constant of motion—but still conserves the
quasienergy (analogously to quasimomentum conserva-
tion in a periodic lattice). The two paradigms share a
common set of phenomena in the fields of quantum chaos
and localization [5–8].

The combination of chaos and superconductivity
produces an entirely new phenomenology, notably the
appearance of an excitation gap as a signature of quantum
chaos [9]. The paradigm common to most of the litera-
ture is the 2D billiard connected to a superconductor
[10], introduced under the name ‘‘Andreev billiard’’ in
Ref. [11]. The name refers to the Andreev reflection which
occurs at the interface with the superconductor, where an
electron at energy " above the Fermi level is converted
into a hole at energy " below it.

From the point of view of computational efficiency,
compact quantum maps such as the kicked rotator [1] (a
particle confined to a circle and driven periodically in
time with a strength that depends on its position) are
much more powerful than 2D models such as billiards.
Indeed, there exists a highly efficient diagonalization
technique that works only for maps [12]. The lack of a
1D map for quantum chaos with superconductivity has
hindered the numerical test of a variety of analytical
predictions [13–20]. Most notably, numerical efforts
have not been able to distinguish the conflicting predic-
tions [9] of random-matrix theory (RMT) and the semi-
classical Bohr-Sommerfeld (BS) quantization: RMT
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BS gives an exponentially vanishing density of states
without a true gap. Recent analytical work [16–20] has
predicted that diffraction creates a gap in the BS density
of states at the inverse Ehrenfest time. This has never been
seen in computer simulations, because the Ehrenfest time
scales logarithmically with the system size and is usually
far too small to play a role. For these reasons there is a
real need for something like a ‘‘quantum Andreev map.’’
Does it exist? If it does, can it be simulated more effi-
ciently than the Andreev billiard? These are the issues
addressed in this paper.

We show how to construct quantum Andreev maps out
of any conventional quantum map (not necessarily cha-
otic), in much the same way as any normal billiard can be
turned into an Andreev billiard by coupling it to a super-
conductor. The construction is guided by the classical
electron and hole dynamics on the Poincaré surface of
section of an Andreev billiard. The Andreev kicked ro-
tator is a particular example of such an Andreev map. We
certify that it possesses the phenomenology of the
Andreev billiards and search for predictions of RMT
and semiclassics. We leave for future investigations the
application of the Andreev map to other kicked models
(possibly with a different phenomenology), such as the
kicked top [3] and the Fermi-Ulam model [21].

A quantum map is represented by the Floquet operator
F, which gives the stroboscopic time evolution u�p�0� �
Fpu�0� of an initial wave function u�0�. (We set the
stroboscopic period �0 � 1 in most equations.) The uni-
tary M�M matrix F has eigenvalues exp��i"m�, with
the quasienergies "m 2 ��	;	� (measured in units of
�h=�0). This describes particle excitations in a normal
metal. We also need hole excitations. A particle excitation
with energy "m (measured relatively to the Fermi level) is
identical to a hole excitation with energy �"m. This
means that hole excitations in a normal metal have
Floquet operator F� and wave function v�p� � �F��pv�0�.

Particles and holes are coupled by connecting the
normal metal via a lead to a superconducting reservoir.
 2003 The American Physical Society 207004-1
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by a spatially localized region in which Andreev reflec-
tion converts electrons into holes and vice versa, with
phase shift �i. (A weak energy dependence of this
phase shift is ignored for simplicity, but can be accounted
for straightforwardly.) Analogously, for the quantum
Andreev map, we assume that Andreev reflections occur
whenever an excitation ends up in a certain subspace of
Hilbert space. This subspace n1; n2; . . . ; nN consists of N
out ofM states in a chosen basis and corresponds to a lead
with N propagating channels. The N �M matrix P
projects onto the lead. Its elements are Pnm � 1 if m �
n 2 fn1; n2; . . . ; nNg and Pnm � 0 otherwise. The dwell
time of a quasiparticle excitation in the normal metal is
�dwell � M=N, equal to the mean time between Andreev
reflections. The fact that Andreev reflections occur only
at multiples of the stroboscopic time �0 is technically
convenient, and should be physically irrelevant for
�dwell 
 �0.

Putting all this together, we construct the quantum
Andreev map from the matrix product

F � P

�
F 0
0 F�

�
; P �

�
1� PTP �iPTP
�iPTP 1� PTP

�
:

(1)

(The superscript ‘‘T’’ indicates the transpose of a matrix.)
The particle-hole wave function  � �u; v� evolves in
time as �p� � F p�0�. The Floquet operator can be
symmetrized (without changing its eigenvalues) by the
unitary transformation F ! P�1=2FP 1=2, with
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In order to establish the correspondence of the 1D
quantum Andreev maps to 2D Andreev billiards, we
examine the spectral properties of the map. The Floquet
operator F possesses a particle-hole symmetry which
entails that its 2M eigenvalues exp��i"m� come in inverse
pairs. This symmetry is the analogue of the particle-hole
symmetry in Andreev billiards, in which excitation en-
ergies " occur symmetrically around the Fermi level. To
avoid double counting of levels, we restrict the quasi-
energy to the interval �0; 	�. The excitation spectrum of
particles and holes consists of theM quasienergies in this
interval, and the mean level spacing 	=M is twice as
small as the level spacing � � 2	=M for particles and
holes separately. The energy scale for the proximity-
induced excitation gap is the Thouless energy ET �
N�=4	 � N=2M � 1=�2�dwell�.

The quantization condition det�F � e�i"� � 0 can be
written equivalently as

d et�1� S�"�S���"�� � 0; (3)

in terms of the N � N scattering matrix [22]

S�"� � P�e�i" � F�1� PTP���1FPT: (4)
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Equation (3) for the Andreev map has the same form as
for the Andreev billiard [23], but there S is given in terms
of a HamiltonianH0 instead of a Floquet operator F. The
two approaches become entirely equivalent in the context
of RMT, when H0 is chosen from one of the Gaussian
ensembles and F is chosen from one of the circular
ensembles [24]. They are also equivalent in the semiclas-
sical limit, when the billiard can be represented by a
Poincaré map which can be quantized approximately [25].

In the mean-field limit M
 N 
 1, RMT predicts a
hard gap in the excitation spectrum of size ERMT � �ET

[with � � 2�3=2�
���
5

p
� 1�5=2 � 0:60], and above the gap a

square-root singularity in the density of states ��"� �
	�1��3=2�"� ERMT�

1=2 (with � � 0:068N1=3�) [9].
Sample-to-sample fluctuations of the lowest excitation
energy "0 around the mean-field gap have been calculated
in Refs. [13,14]. A universal probability distribution was
predicted for the rescaled energy x � �"0 � ERMT�=�.
While the mean-field prediction of RMT has been tested
numerically in an Andreev billiard [9], the numerical
error bars are too large to extract the predicted universal
gap fluctuations.

To demonstrate the efficiency of the quantum Andreev
maps, we specialize to the quantum kicked rotator. The
Floquet operator is [2]

F � exp

�
i
�h�0
4I0

@2

@�2

�
exp

�
�i
KI0
�h�0

cos�
�
� exp

�
i
�h�0
4I0

@2

@�2

�
;

(5)

with I0 the moment of inertia of the particle and K the
(dimensionless) kicking strength. The particle moves
freely along the circle for half a period, is then kicked
with a strength K cos�, and proceeds freely for another
half period. The transition from classical to quantum
behavior is governed by the effective Planck constant
�heff � �h�0=I0. Since we would like to compare the kicked
rotator to a chaotic billiard, without localization, we
follow the usual procedure of quantizing phase space on
the torus �; p 2 �0; 2	�, rather than on a cylinder, with
p � �i �heff@=@� the dimensionless angular momentum
[2]. For �heff � 2	=M, with integerM, the Floquet opera-
tor is an M�M unitary symmetric matrix. In angular
momentum representation it has elements

Fkk0 � e
��i	=2M��k2�k02��UQUy�kk0 ; (6a)

Ukk0 �M
�1=2e�2	i=M�kk0 ; (6b)

Qkk0 � �kk0e��iMK=2	� cos�2	k=M�: (6c)

Upon increasing K, the classical dynamics varies from
fully integrable (K � 0) to fully chaotic [K * 7, with
Lyapunov exponent ! � ln�K=2�]. For K < 7, stable and
unstable motion coexist (a so-called mixed phase space).

To introduce the Andreev reflection, we use a projec-
tion operator which is diagonal in p representation,

�PTP�kk0 � �kk0 �
�
1 if L � k � L� N � 1
0 otherwise:

(7)
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(We checked that similar results are obtained when P is
diagonal in � representation.) The position L of the lead to
the superconductor is arbitrary. The Floquet operator F
of the ‘‘Andreev kicked rotator’’ is then obtained by
inserting Eqs. (6) and (7) into Eq. (1). We apply the
symmetrization (2), so F is a unitary symmetric matrix.
The real symmetric matrix 1

2 �F �F y� can be diagonal-
ized efficiently with O�M2 lnM� operations [and not
O�M3� as with standard methods] by means of the
Lanczos technique, if the multiplication with the matrix
U is carried out with the help of the fast Fourier trans-
form algorithm [12]. The eigenvalues cos"m uniquely
determine the quasienergy "m 2 �0; 	�.

In the inset of Fig. 1, we show the density of states ��"�
for system size M � 8192, kicking strength K � 45
(strongly chaotic dynamics), and several widths N of
the lead to the superconductor. The density of states has
been averaged over 250 different positions of the lead.
The data points fall on top of the RMT prediction [9]
without any adjustable parameter. Reducing the kicking
strength down toK � 1:2, one enters the regime of mixed
classical dynamics. We see that the gap disappears, as
predicted in Ref. [26].

To test RMT beyond the mean-field limit, we study the
statistical fluctuations of the gap. The main panel of
Fig. 1 shows the probability distribution of the smallest
eigenvalue "0 in the chaotic regime. To improve statistics
we sampled 6000 different positions of the lead. We
rescaled the energy x � �"0 � ERMT�=�, as prescribed
by Ref. [13]. Good agreement is observed with the uni-
versal scaling distribution [27], again without any adjust-
able parameters.
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FIG. 1. Main plot: Gap distribution for the Andreev kicked
rotator with M � 8192, K � 45, and M=N � �dwell � 10 (dia-
monds), 20 (circles), 40 (+), and 50 (�). The solid line gives
the RMT prediction [13]. Inset: Density of states for the same
system. The solid line is the RMT prediction [9]. The dashed
line is a numerical result in the mixed regime (M � 8192, K �
1:2, M=N � 10).
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It is predicted theoretically that deviations from RMT
should appear if the Ehrenfest time �E � !�1 lnM is no
longer small compared to �dwell. For �E * �dwell, the
semiclassical Bohr-Sommerfeld approximation [9,26]
should be valid, with a diffraction induced gap of the
order of �h=�E [16]. To search for these deviations from
RMT, we consider rotators with smaller kicking strengths
(but still in the fully chaotic regime), thus smaller
Lyapunov exponent, and much larger M.

In Fig. 2, we show the density of states for M �
131 072 and K � 14. Strong deviations from the RMT
prediction are clearly visible. Also plotted is the result of
a BS calculation [9], in which we slightly smoothed the
singular delta functions. This approximation agrees better
with the exact result. Most remarkably, it reproduces the
three distinct peaks in the density of states, which now
can be identified with trajectories of certain lengths. All
trajectories with lengths that are odd multiples of �dwell �
5 contribute to the peak at "=ET � 	, odd multiples of 4
contribute at "=ET � 5	=4, and odd multiples of 3 con-
tribute at "=ET � 5	=3.

A systematic reduction of the excitation gap is observed
upon increasing the ratio �E=�dwell, as shown in Fig. 3.
The main panel is a semilogarithmic plot of "0=ET as a
function of M 2 �29; 219�, for M=N � �dwell � 5 and
K � 14. Existing theories [19,20] predict a linear initial
decrease of "0 with lnM at fixed �dwell � M=N. We fit the
data to the prediction of Vavilov and Larkin [20],

"0
ERMT

� 1�
%

2!�dwell

�
lnM� 2 ln

M
N

� %0

�
: (8)

We find % � 0:59 and %0 � 3:95. Once % and %0 are
extracted, no free parameter is left, and the resulting
curve, shown with a solid line in the inset of Fig. 3,
correctly reproduces the parametric dependence on
0 1 2 3 4 5

 ε/ET

0

1

2

3

4

ρ(
ε)

 δ

FIG. 2. Density of states for the Andreev kicked rotator with
M � 131 072, �dwell � 5, and K � 14 (solid line), compared
with the Bohr-Sommerfeld calculation (histogram), and the
RMT prediction (dashed line).
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FIG. 3. Main plot: Dependence of the mean gap on the system
size M, for �dwell � M=N � 5 and K � 14. Averages have been
calculated with 400 (for M � 512) to 40 (for M > 5� 105)
different positions of the contacts to the superconductor. The
error bars represent the root mean square of "0. The dashed line
is the RMT prediction and the solid line is a linear fit to the
data points. Inset: Dependence of the mean gap on �dwell �
M=N for K � 14 and M � 524 288. The dashed line is the
RMT prediction and the solid and dotted curves are given by
Eqs. (8) and (9), respectively, with coefficients extracted from
the linear fit in the main plot.
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�dwell � M=N at fixedM. As a further check, we tried the
slightly different expression

"0
ERMT

� 1�
%

2!�dwell
�lnM� %00�; (9)

with %00 � %0 � 2 ln5. The resulting curve (dotted line in
the inset of Fig. 3) shows significant deviations from the
numerical data. We conclude that Eq. (8) gives the correct
parametric dependence of the Andreev gap.

A discrepancy remains in the value of the numerical
coefficients. While the coefficient %0 is model dependent,
the prefactor % is expected to be universal. Our numerics
gives % � 0:59 0:08, in between the two competing
predictions % � 0:23 of Ref. [20] and % � 2 of Ref. [19].

In conclusion, we have constructed a quantum map that
accounts for the presence of superconductivity. The
Andreev kicked rotator introduced above has been shown
to be equivalent to the Andreev billiards studied thus far.
Owing to the fact that it is one dimensional rather than
two dimensional, it is much more efficient computation-
ally, which permits one to observe two theoretical pre-
dictions that are currently out of reach of billiard
simulations: the universal gap fluctuations for a large
Lyapunov exponent and the logarithmic reduction of the
gap for a small Lyapunov exponent. We foresee that the
Andreev kicked rotator on a cylinder (instead of on a
torus) can be an equally effective tool to study the inter-
play of superconductivity and localization.
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[18] İ. Adagideli and C.W. J. Beenakker, Phys. Rev. Lett. 89,
237002 (2002).

[19] P. G. Silvestrov, M. C. Goorden, and C.W. J. Beenakker,
Phys. Rev. Lett. 90, 116801 (2003).

[20] M. G. Vavilov and A. I. Larkin, Phys. Rev. B 67, 115335
(2003).

[21] S. R. Jain, Phys. Rev. Lett. 70, 3553 (1993).
[22] A. Ossipov, T. Kottos, and T. Geisel, cond-mat/0208378.
[23] K. M. Frahm, P.W. Brouwer, J. A. Melsen, and C.W. J.

Beenakker, Phys. Rev. Lett. 76, 2981 (1996).
[24] Y.V. Fyodorov and H.-J. Sommers, JETP Lett. 72, 422

(2000).
[25] E. B. Bogomolny, Nonlinearity 5, 805 (1992).
[26] H. Schomerus and C.W. J. Beenakker, Phys. Rev. Lett. 82,

2951 (1999).
[27] C. A. Tracy and H. Widom, Commun. Math. Phys. 159,

151 (1994).
207004-4


