878 research outputs found

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    Mixed-symmetry octupole and hexadecapole excitations in N=52 isotones

    Get PDF
    In addition to the well-established quadrupole mixed-symmetry states, octupole and hexadecapole excitations with mixed-symmetry character have been recently proposed for the N = 52 isotones 92Zr and 94Mo. We performed two inelastic proton-scattering experiments to study this kind of excitations in the heaviest stable N = 52 isotone 96Ru. From the combined experimental data of both experiments absolute transition strengths were extracted

    Discrepancy between German S3 Guideline Recommendations and Daily Urologic Practice in the Management of Nonmuscle Invasive Bladder Cancer: Results of a Binational Survey

    Get PDF
    Introduction: Guideline recommendations are meant to help minimize morbidity and to improve the care of nonmuscle invasive bladder cancer (NMIBC) patients but studies have suggested an underuse of guideline-recommended care. The aim of this study was to evaluate the level of adherence of German and Austrian urologists to German guideline recommendations. Methods: A survey of 27 items evaluating diagnostic and therapeutic recommendations (15 cases of strong consensus and 6 cases of consensus) for NMIBC was administered among 14 urologic training courses. Survey construction and realization followed the checklist for reporting results of internet e-surveys and was approved by an internal review board. Results: Between January 2018 and June 2019, a total of 307 urologists responded to the questionnaire, with a mean response rate of 71%. The data showed a weak role of urine cytology (54%) for initial diagnostics although it is strongly recommended by the guideline. The most frequently used supporting diagnostic tool during transurethral resection of the bladder was hexaminolevulinate (95%). Contrary to the guideline recommendation, 38% of the participants performed a second resection in the case of pTa low-grade NMIBC. Correct monitoring of Bacille Calmette-Guerin (BCG) response with cystoscopy and cytology was performed by only 34% of the urologists. Conclusions: We found a discrepancy between certain guideline recommendations and daily routine practice concerning the use of urine cytology for initial diagnostics, instillation therapy with a low monitoring rate of BCG response, and follow-up care with unnecessary second resection after pTa low-grade NMIBC in particular. Our survey showed a moderate overall adherence rate of 73%. These results demonstrate the need for sharpening awareness of German guideline recommendations by promoting more intense education of urologists to optimize NMIBC care thus decreasing morbidity and mortality rates

    Extreme multi-valence states in mixed actinide oxides

    Get PDF
    To assure the safety of oxide-fuel based nuclear reactors, the knowledge of the atomic-scale properties of U1−yMyO2±x materials is essential. These compounds show complex chemical properties, originating from the fact that actinides and rare earths may occur with different oxidation states. In these mostly ionic materials, aliovalent cationic configurations can induce changes in the oxygen stoichiometry, with dramatic effects on the properties of the fuel. First studies on U1−yAmyO2±x indicated that these materials exhibit particularly complex electronic and local-structure configurations. Here we present an in-depth study of these compounds, over a wide compositional domain, by combining XRD, XAS and Raman spectroscopy. We provide evidences of the co-existence of four different cations (U4+, U5+, Am3+, Am4+) in U1−yMyO2±x compounds, which nevertheless maintain the fluorite structure. Indeed, we show that the cationic sublattice is basically unaffected by the extreme multi-valence states, whereas complex defects are present in the oxygen sublattice

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Cushioning and lateral stability functions of cloth sport shoes

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Sports Biomechanics on 28/08/2007, available online: http://dx.doi.org/10.1080/14763140701491476.In this study, we evaluated the protective functions of cloth sport shoes, including cushioning and lateral stability. Twelve male students participated in the study (mean ± s: age 12.7 ± 0.4 years, mass 40.7 ± 0;5.9 kg, height 1.50 ± 0.04 m). Cloth sport shoes, running shoes, basketball shoes, cross-training shoes, and barefoot conditions were investigated in random sequence. Human pendulum and cutting movement tests were used to assess cushioning performance and lateral stability, respectively. For cushioning, the running shoes (2.06 body weight, BW) performed the best, while the cross-training shoes (2.30 BW) and the basketball shoes (2.37 BW) both performed better than the cloth sport shoes (2.55 BW) and going barefoot (2.63 BW). For the lateral stability test, range of inversion-eversion was found to be from 3.6 to 4.9°, which was far less than that for adult participants (<20°). No significant differences were found between conditions. All conditions showed prolonged durations from foot-strike to maximum inversion (66-95 ms), which was less vigorous than that for adult participants (>40 ms) and was unlikely to evoke intrinsic stability failure. In conclusion, the cloth sport shoe showed inferior cushioning capability but the same lateral stability as the other sports shoes for children

    Localized direction selective responses in the dendrites of visual interneurons of the fly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The various tasks of visual systems, including course control, collision avoidance and the detection of small objects, require at the neuronal level the dendritic integration and subsequent processing of many spatially distributed visual motion inputs. While much is known about the pooled output in these systems, as in the medial superior temporal cortex of monkeys or in the lobula plate of the insect visual system, the motion tuning of the elements that provide the input has yet received little attention. In order to visualize the motion tuning of these inputs we examined the dendritic activation patterns of neurons that are selective for the characteristic patterns of wide-field motion, the lobula-plate tangential cells (LPTCs) of the blowfly. These neurons are known to sample direction-selective motion information from large parts of the visual field and combine these signals into axonal and dendro-dendritic outputs.</p> <p>Results</p> <p>Fluorescence imaging of intracellular calcium concentration allowed us to take a direct look at the local dendritic activity and the resulting local preferred directions in LPTC dendrites during activation by wide-field motion in different directions. These 'calcium response fields' resembled a retinotopic dendritic map of local preferred directions in the receptive field, the layout of which is a distinguishing feature of different LPTCs.</p> <p>Conclusions</p> <p>Our study reveals how neurons acquire selectivity for distinct visual motion patterns by dendritic integration of the local inputs with different preferred directions. With their spatial layout of directional responses, the dendrites of the LPTCs we investigated thus served as matched filters for wide-field motion patterns.</p
    corecore