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Abstract. In addition to the well-established quadrupole mixed-symmetry states, octupole and hexadecapole

excitations with mixed-symmetry character have been recently proposed for the N = 52 isotones 92Zr and 94Mo.

We performed two inelastic proton-scattering experiments to study this kind of excitations in the heaviest stable

N = 52 isotone 96Ru. From the combined experimental data of both experiments absolute transition strengths

were extracted.

1 Introduction

Isovector excitations of valence-shell nucleons are usu-

ally denoted as mixed-symmetry states (MSS) [1]. They

are predicted in the proton-neutron version of the Interact-

ing Boson Model (IBM-2) [2–4] and can be distinguished

from fully-symmetric states (FSS) by their F-spin quan-

tum number [5]. As an experimental signature for MSS,

the IBM-2 predicts strong M1 transitions to their symmet-

ric counterparts with transition matrix elements in the or-

der of 1 μN . The collective structure of low-lying states

in near-spherical, vibrational nuclei is dominated by the

quadrupole degree of freedom. By now, mixed-symmetry

quadrupole excitations in vibrational nuclei are well es-

tablished as collective features near closed shells [6]. In

addition to the quadrupole degree of freedom, mixed-

symmetry excitations of octupole and hexadecapole char-

acter have been proposed in the N = 52 isotones 92Zr

and 94Mo [7–9]. The identification is based on remark-

ably strong M1 transitions between the lowest-lying 3−
and 4+ states. Recently, the strong M1 transition between

the lowest-lying 4+ states in 94Mo was successfully de-

scribed by including g-boson excitations in IBM-2 calcu-

lations [9], suggesting FS and MS one-phonon hexade-

capole admixtures in the 4+1 and 4+2 states, respectively. It
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is the purpose of the present work to study possible mixed-

symmetry octupole and hexadecapole states in the heaviest

stable N = 52 isotone 96Ru.

2 Experiments

The determination of absolute transition strengths requires

the measurement of spins and parities of excited states,

γ-decay branching ratios, multipole mixing ratios, and

nuclear level lifetimes. For this purpose, two inelastic

proton-scattering experiments were performed. In a first

experiment, performed at the Wright Nuclear Structure

Laboratory (WNSL) at Yale University, USA, a proton

beam with an energy of Ep = 8.4 MeV impinged on

a 106 μg/cm2 enriched 96Ru target, supported by a 12C

backing with a thickness of 14 μg/cm2. The scattered

protons were detected in coincidence with de-exciting γ-
rays using five silicon particle detectors and eight BGO-

shielded Clover-type HPGe detectors, respectively. From

the acquired pγ coincidence data γ-decay branching ratios
were extracted, while the additionally acquired γγ coin-

cidence data were used to determine spins and multipole

mixing ratios by means of a γγ angular correlation analy-

sis.

In order to extract nuclear level lifetimes in the fs

range, we performed a second proton scattering experi-

ment at the Institute for Nuclear Physics at the Univer-
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Figure 1. (Color online) Excerpt of the experimental level

scheme of 96Ru. M1, E1, and E2 transitions are indicated with

black, blue, and red arrows, respectively. The width of the ar-

rows is proportional to the γ-decay branching ratios. Along with

the 2+ms(≡ 2+3 )→ 2+1 transition [13], M1 transitions with size-

able strengths were observed between the lowest-lying 3− and

4+ states.

sity of Cologne, Germany. The same target as used for

the experiment at WNSL was bombarded with a beam of

7.0 MeV protons. The scattered protons were detected

with the new particle detector array SONIC embedded

within the γ-spectrometer HORUS to allow for a coinci-

dent detection of scattered protons and de-exciting γ-rays.
Nuclear level lifetimes were extracted by means of the

Doppler-shift attenuation method (DSAM) [10] from the

pγ coincidence data. Since the initial direction and veloc-

ity of the recoil nucleus, as well as its excitation energy can

be extracted from the energy of the scattered proton, the

pγ coincidence yields several advantages for the DSAM

measurement [11]:

• The angle θγ between the direction of the γ-ray emission

and the direction of motion of the recoil nucleus can be

extracted on an event-by-event basis.

• Feeding from higher-lying states is eliminated by gating

on the excitation energy.

• Peak centroids can be extracted from proton-gated γ-ray
spectra, yielding an increased peak-to-background ratio.

The slowing-down process of the 96Ru recoil nuclei in the

target and stopper materials was modeled by means of the

Monte-Carlo simulation program DSTOP96 [12]. A com-

parison of the calculated Doppler-shift attenuation factor

with the experimentally determined value finally yields the

nuclear level lifetime.

3 Experimental results

From the combined experimental data of both experiments

absolute transition strengths were calculated. The results

concerning one-phonon mixed-symmetry states in 96Ru

are shown in Figure 1, pointing out M1 transitions with

sizeable strengths of 0.14(4) μ2N and 0.90(18) μ2N between

the low-lying 3− and 4+ states, respectively. Based on

their absolute M1 transition strengths, the 3
(−)
2

state at

Ex = 3077 keV and the 4+2 state at Ex = 2462 keV are

likely candidates to show mixed-symmetry one-phonon

octupole and hexadecapole contributions, respectively.

Acknowledgments

This work is supported by the DFG under grant Nos. (ZI-

510/4-2) and SFB 634, the U.S. Department of Energy

Grant No. DE-FG02-01ER40609, and the BMBF Grant

No. 05P12RDFN8. P.P. is grateful for the financial sup-

port of the Bulgarian Science Fund under contract DFNI-

E 01/2. D.S. acknowledges support by the Alliance Pro-

gram of the Helmholtz Association (HA216/EMMI). D.R.

and D.S. acknowledge the German Academic Exchange

Service (DAAD) for financial support. S.G.P. and M.S.

are supported by the Bonn-Cologne Graduate School of

Physics and Astronomy.

References

[1] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984)

[2] A. Arima, and F. Iachello, Phys. Rev. Lett. 35, 1069
(1975)

[3] A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys.

Lett. B 66, 205 (1977)

[4] T. Otsuka, A. Arima, and F. Iachello, Nucl. Phys. A

309, 1 (1978)

[5] P. van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann.

Phys. 171, 253 (1986)

[6] N. Pietralla, P. von Brentano, and A. F. Lisetskiy,

Prog. Part. Nucl. Phys. 60, 225 (2008)

[7] C. Fransen, N. Pietralla, Z. Ammar, D. Bandyopad-

hyay, N. Boukharouba, P. von Brentano, A. Dewald, J.

Gableske, A. Gade, J. Jolie, U. Kneissel, S. R. Lesher,

A. F. Lisetskiy, M. T. McEllistrem, M. Merrik, H. H.

Pitz, N. Warr, V. Werner, and S. W. Yates, Phys. Rev. C

67, 024307 (2003)

[8] M. Scheck, P. A. Butler, C. Fransen, V. Werner, and S.

W. Yates, Phys. Rev. C 81, 064305 (2010)

[9] R. J. Casperson, V. Werner, and S. Heinze, Phys. Lett.

B 721, 51 (2013)

[10] T. K. Alexander and J. S. Foster, Adv. Nucl. Phys.

10, 197 (1978)

[11] G. G. Seaman, N. Benczer-Koller, M. C. Bertin, and

J. R. MacDonald, Phys. Rev. 188, 1706 (1969)

[12] P. Petkov, J. Gableske, O. Vogel, A. Dewald, P. von

Brentano, R. Krücken, R. Peusquens, N. Nicloay, A.

Gizon, J. Gizon, D. Bazzacco, C. Rossi-Alvarez, S. Lu-

nardi, P. Pavan, D. R. Napoli, W. Andrejtscheff, and R.

V. Jolos, Nucl. Phys. A 640, 293 (1998)

[13] N. Pietralla, C. J. Barton, R. Krücken, C. W. Beau-

sang, M. A. Caprio, R. F. Casten, J. R. Copper, A. A.

Hecht, H. Newman, J. R. Novak, and N. V. Zamfir,

Phys. Rev. C 64, 031301(R) (2001)

EPJ Web of Conferences

01047-p.2


