381 research outputs found

    An interview study about the use of logs in embedded software engineering

    Get PDF
    Context: Execution logs capture the run-time behavior of software systems. To assist developers in their maintenance tasks, many studies have proposed tools to analyze execution information from logs. However, it is as yet unknown how industry developers use logs in embedded software engineering. Objective: In this study, we aim to understand how developers use logs in an embedded software engineering context. Specifically, we would like to gain insights into the type of logs developers analyze, the purposes for which developers analyze logs, the information developers need from logs and their expectation on tool support. Method: In order to achieve the aim, we conducted these interview studies. First, we interviewed 25 software developers from ASML, which is a leading company in developing lithography machines. This exploratory case study provides the preliminary findings. Next, we validated and refined our findings by conducting a replication study. We involved 14 interviewees from four companies who have different software engineering roles in their daily work. Results: As the result of our first study, we compile a preliminary taxonomy which consists of four types of logs used by developers in practice, 18 purposes of using logs, 13 types of information developers search in logs, 13 challenges faced by developers in log analysis and three suggestions for tool support provided by developers. This taxonomy is refined in the replication study with three additional purposes, one additional information need, four additional challenges and three additional suggestions of tool support. In addition, with these two studies, we observed that text-based editors and self-made scripts are commonly used when it comes to tooling in log analysis practice. As indicated by the interviewees, the development of automatic analysis tools is hindered by the quality of the logs, which further suggests several challenges in log instrumentation and management. Conclusions: Based on our study, we provide suggestions for practitioners on logging practices. We provide implications for tool builders on how to further improve tools based on existing techniques. Finally, we suggest some research directions and studies for researchers to further study software logging.</p

    Sulfonylurea derivatives and cancer, friend or foe?

    Get PDF
    Type 2 diabetes mellitus (T2DM) is associated with a higher risk of cancer and cancer-related mortality. Increased blood glucose and insulin levels in T2DM patients may be, at least in part, responsible for this effect. Indeed, lowering glucose and/or insulin levels pharmacologically appears to reduce cancer risk and progression, as has been demonstrated for the biguanide metformin in observational studies. Studies investigating the influence of sulfonylurea derivatives (SUs) on cancer risk have provided conflicting results, partly due to comparisons with metformin. Furthermore, little attention has been paid to within-class differences in systemic and off-target effects of the SUs. The aim of this systematic review is to discuss the available preclinical and clinical evidence on how the different SUs influence cancer development and risk. Databases including PubMed, Cochrane, Database of Abstracts on Reviews and Effectiveness, and trial registries were systematically searched for available clinical and preclinical evidence on within-class differences of SUs and cancer risk. The overall preclinical and clinical evidence suggest that the influence of SUs on cancer risk in T2DM patients differs between the various SUs. Potential mechanisms include differing affinities for the sulfonylurea receptors and thus differential systemic insulin exposure and off-target anti-cancer effects mediated for example through potassium transporters and drug export pumps. Preclinical evidence supports potential anti-cancer effects of SUs, which are of interest for further studies and potentially repurposing of SUs. At this time, the evidence on differences in cancer risk between SUs is not strong enough to guide clinical decision making

    Adversarial Patch Camouflage against Aerial Detection

    Full text link
    Detection of military assets on the ground can be performed by applying deep learning-based object detectors on drone surveillance footage. The traditional way of hiding military assets from sight is camouflage, for example by using camouflage nets. However, large assets like planes or vessels are difficult to conceal by means of traditional camouflage nets. An alternative type of camouflage is the direct misleading of automatic object detectors. Recently, it has been observed that small adversarial changes applied to images of the object can produce erroneous output by deep learning-based detectors. In particular, adversarial attacks have been successfully demonstrated to prohibit person detections in images, requiring a patch with a specific pattern held up in front of the person, thereby essentially camouflaging the person for the detector. Research into this type of patch attacks is still limited and several questions related to the optimal patch configuration remain open. This work makes two contributions. First, we apply patch-based adversarial attacks for the use case of unmanned aerial surveillance, where the patch is laid on top of large military assets, camouflaging them from automatic detectors running over the imagery. The patch can prevent automatic detection of the whole object while only covering a small part of it. Second, we perform several experiments with different patch configurations, varying their size, position, number and saliency. Our results show that adversarial patch attacks form a realistic alternative to traditional camouflage activities, and should therefore be considered in the automated analysis of aerial surveillance imagery.Comment: 9 page

    Isabelle/PIDE as Platform for Educational Tools

    Full text link
    The Isabelle/PIDE platform addresses the question whether proof assistants of the LCF family are suitable as technological basis for educational tools. The traditionally strong logical foundations of systems like HOL, Coq, or Isabelle have so far been counter-balanced by somewhat inaccessible interaction via the TTY (or minor variations like the well-known Proof General / Emacs interface). Thus the fundamental question of math education tools with fully-formal background theories has often been answered negatively due to accidental weaknesses of existing proof engines. The idea of "PIDE" (which means "Prover IDE") is to integrate existing provers like Isabelle into a larger environment, that facilitates access by end-users and other tools. We use Scala to expose the proof engine in ML to the JVM world, where many user-interfaces, editor frameworks, and educational tools already exist. This shall ultimately lead to combined mathematical assistants, where the logical engine is in the background, without obstructing the view on applications of formal methods, formalized mathematics, and math education in particular.Comment: In Proceedings THedu'11, arXiv:1202.453

    Deuterium body array for the simultaneous measurement of hepatic and renal glucose metabolism and gastric emptying with dynamic 3D deuterium metabolic imaging at 7T

    Get PDF
    Deuterium metabolic imaging (DMI) is a novel noninvasive method to assess tissue metabolism and organ (patho)physiology in vivo using deuterated substrates, such as [6,6'- 2 H 2 ]-glucose. The liver and kidneys play a central role in whole-body glucose homeostasis, and in type 2 diabetes, both hepatic and renal glucose metabolism are dysregulated. Diabetes is also associated with gastric emptying abnormalities. In this study, we developed a four-channel 2 H transmit/receive body array coil for DMI in the human abdomen at 7 T and assessed its performance. In addition, the feasibility of simultaneously measuring gastric emptying, and hepatic and renal glucose uptake and metabolism with dynamic 3D DMI upon administration of deuterated glucose, was investigated. Simulated and measured B 1 + patterns were in good agreement. The intrasession variability of the natural abundance deuterated water signal in the liver and right kidney, measured in nine healthy volunteers, was 5.6% ± 0.9% and 4.9% ± 0.7%, respectively. Dynamic 3D DMI scans with oral administration of [6,6'- 2 H 2 ]-glucose showed similar kinetics of deuterated glucose appearance and disappearance in the liver and kidney. The measured gastric emptying half time was 80 ± 10 min, which is in good agreement with scintigraphy measurements. In conclusion, DMI with oral administration of [6,6'- 2 H 2 ]-glucose enables simultaneous assessment of gastric emptying and liver and kidney glucose uptake and metabolism. When applied in patients with diabetes, this approach may advance our understanding of the interplay between disturbances in liver and kidney glucose uptake and metabolism and gastric emptying, at a detail that cannot be achieved by any other method

    Residual quadrupolar couplings observed in 7 Tesla deuterium MR spectra of skeletal muscle

    Get PDF
    Purpose: Deuterium metabolic imaging could potentially be used to investigate metabolism in skeletal muscle noninvasively. However, skeletal muscle is a tissue with a high degree of spatial organization. In this study, we investigated the effect of incomplete motional averaging on the naturally abundant deuterated water signal in 7 Tesla deuterium spectra of the lower leg muscles and the dependence on the angle between the muscle fibers and the main magnetic field B0, as determined by DTI. Methods: Natural abundance deuterium MRSI measurements of the right lower leg muscles were performed at 7 Tesla. Three subjects were scanned in a supine position, with the right leg parallel with the B0 field. One subject was scanned twice; during the second scan, the subject was laying on his right side and the right knee was bent such that the angle between the right lower leg and B0 was approximately 45°. DTI was performed in the same subjects in the same positions at 3 Tesla to determine muscle fiber angles. Results: We observed splittings in the natural abundance deuterated water signal. The size of the splittings varied between different muscles in the lower leg but were mostly similar among subjects for each muscle. The splittings depended on the orientation of the muscle fibers with respect to the main magnetic field B0. Conclusion: Partial molecular alignment in skeletal muscle leads to residual deuteron quadrupolar couplings in deuterated water, the size of which depends on the angle between the muscle fibers and B0

    Proton metabolic mapping of the brain at 7 T using a two-dimensional free induction decay-echo-planar spectroscopic imaging readout with lipid suppression

    Get PDF
    The increased signal-to-noise ratio (SNR) and chemical shift dispersion at high magnetic fields (≥7 T) have enabled neuro-metabolic imaging at high spatial resolutions. To avoid very long acquisition times with conventional magnetic resonance spectroscopic imaging (MRSI) phase-encoding schemes, solutions such as pulse-acquire or free induction decay (FID) sequences with short repetition time and inner volume selection methods with acceleration (echo-planar spectroscopic imaging [EPSI]), have been proposed. With the inner volume selection methods, limited spatial coverage of the brain and long echo times may still impede clinical implementation. FID-MRSI sequences benefit from a short echo time and have a high SNR per time unit; however, contamination from strong extra-cranial lipid signals remains a problem that can hinder correct metabolite quantification. L2-regularization can be applied to remove lipid signals in cases with high spatial resolution and accurate prior knowledge. In this work, we developed an accelerated two-dimensional (2D) FID-MRSI sequence using an echo-planar readout and investigated the performance of lipid suppression by L2-regularization, an external crusher coil, and the combination of these two methods to compare the resulting spectral quality in three subjects. The reduction factor of lipid suppression using the crusher coil alone varies from 2 to 7 in the lipid region of the brain boundary. For the combination of the two methods, the average lipid area inside the brain was reduced by 2% to 38% compared with that of unsuppressed lipids, depending on the subject's region of interest. 2D FID-EPSI with external lipid crushing and L2-regularization provides high in-plane coverage and is suitable for investigating brain metabolite distributions at high fields

    Impact of CARDIOrespiratory FITness on Arrhythmia Recurrence in Obese Individuals With Atrial Fibrillation The CARDIO-FIT Study

    Get PDF
    AbstractBackgroundObesity begets atrial fibrillation (AF). Although cardiorespiratory fitness is protective against incident AF in obese individuals, its effect on AF recurrence or the benefit of cardiorespiratory fitness gain is unknown.ObjectivesThis study sought to evaluate the role of cardiorespiratory fitness and the incremental benefit of cardiorespiratory fitness improvement on rhythm control in obese individuals with AF.MethodsOf 1,415 consecutive patients with AF, 825 had a body mass index ≥27 kg/m2 and were offered risk factor management and participation in a tailored exercise program. After exclusions, 308 patients were included in the analysis. Patients underwent exercise stress testing to determine peak metabolic equivalents (METs). To determine a dose response, cardiorespiratory fitness was categorized as: low (<85%), adequate (86% to 100%), and high (>100%). Impact of cardiorespiratory fitness gain was ascertained by the objective gain in fitness at final follow-up (≥2 METs vs. <2 METs). AF rhythm control was determined using 7-day Holter monitoring and AF severity scale questionnaire.ResultsThere were no differences in baseline characteristics or follow-up duration between the groups defined by cardiorespiratory fitness. Arrhythmia-free survival with and without rhythm control strategies was greatest in patients with high cardiorespiratory fitness compared to adequate or low cardiorespiratory fitness (p < 0.001 for both). AF burden and symptom severity decreased significantly in the group with cardiorespiratory fitness gain ≥2 METs as compared to <2 METs group (p < 0.001 for all). Arrhythmia-free survival with and without rhythm control strategies was greatest in those with METs gain ≥2 compared to those with METs gain <2 in cardiorespiratory fitness (p < 0.001 for both).ConclusionsCardiorespiratory fitness predicts arrhythmia recurrence in obese individuals with symptomatic AF. Improvement in cardiorespiratory fitness augments the beneficial effects of weight loss. (Evaluating the Impact of a Weight Loss on the Burden of Atrial Fibrillation [AF] in Obese Patients; ACTRN12614001123639
    corecore