10 research outputs found

    An ALMA Survey of faint disks in the Chamaeleon I star-forming region: Why are some Class II disks so faint?

    Full text link
    ALMA surveys of nearby star-forming regions have shown that the dust mass in the disk is correlated with the stellar mass, but with a large scatter. This scatter could indicate either different evolutionary paths of disks or different initial conditions within a single cluster. We present ALMA Cycle 3 follow-up observations for 14 Class II disks that were low S/N detections or non-detections in our Cycle 2 survey of the ∌2\sim 2 Myr-old Chamaeleon I star-forming region. With 5 times better sensitivity, we detect millimeter dust continuum emission from six more sources and increase the detection rate to 94\% (51/54) for Chamaeleon I disks around stars earlier than M3. The stellar-disk mass scaling relation reported in \citet{pascucci2016} is confirmed with these updated measurements. Faint outliers in the FmmF_{mm}--M∗M_* plane include three non-detections (CHXR71, CHXR30A, and T54) with dust mass upper limits of 0.2 M⊕_\oplus and three very faint disks (CHXR20, ISO91, and T51) with dust masses ∌0.5\sim 0.5 M⊕_\oplus. By investigating the SED morphology, accretion property and stellar multiplicity, we suggest for the three millimeter non-detections that tidal interaction by a close companion (<<100 AU) and internal photoevaporation may play a role in hastening the overall disk evolution. The presence of a disk around only the secondary star in a binary system may explain the observed stellar SEDs and low disk masses for some systems.Comment: ApJ accepte

    The evolution of dust-disk sizes from a homogeneous analysis of 1-10 Myr-old stars

    Full text link
    We utilize ALMA archival data to estimate the dust disk size of 152 protoplanetary disks in Lupus (1-3 Myr), Chamaeleon I (2-3 Myr), and Upper-Sco (5-11 Myr). We combine our sample with 47 disks from Tau/Aur and Oph whose dust disk radii were estimated, as here, through fitting radial profile models to visibility data. We use these 199 homogeneously derived disk sizes to identify empirical disk-disk and disk-host property relations as well as to search for evolutionary trends. In agreement with previous studies, we find that dust disk sizes and millimeter luminosities are correlated, but show for the first time that the relationship is not universal between regions. We find that disks in the 2-3 Myr-old Cha I are not smaller than disks in other regions of similar age, and confirm the Barenfeld et al. (2017) finding that the 5-10 Myr USco disks are smaller than disks belonging to younger regions. Finally, we find that the outer edge of the Solar System, as defined by the Kuiper Belt, is consistent with a population of dust disk sizes which have not experienced significant truncation.Comment: ApJ accepted, 38 pages, 16 figures, 68k compatibl

    Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Get PDF
    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O I] 63 ÎŒm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O I] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O I] 63 ÎŒm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA

    Herschel spectra of 11 very low mass stars

    No full text
    VizieR online Data Catalogue associated with article published in journal Astronomical Journal (AAS) with title 'Hints for small disks around very low mass stars and brown dwarfs.' (bibcode: 2017ApJ...841..116H
    corecore