1,026 research outputs found

    The Short `a\u27 Pattern of Philadelphia among African-American Speakers

    Get PDF

    Environmental Estrogens Alter Early Development in Xenopus laevis

    Get PDF
    A growing number of environmental toxicants found in pesticides, herbicides, and industrial solvents are believed to have deleterious effects on development by disrupting hormone-sensitive processes. We exposed Xenopus laevis embryos at early gastrula to the commonly encountered environmental estrogens nonylphenol, octylphenol, and methoxychlor, the antiandrogen, p,p-DDE, or the synthetic androgen, 17 alpha-methyltestosterone at concentrations ranging from 10 nM to 10 microM and examined them at tailbud stages (approximately 48 hr of treatment). Exposure to the three environmental estrogens, as well as to the natural estrogen 17 beta-estradiol, increased mortality, induced morphologic deformations, increased apoptosis, and altered the deposition and differentiation of neural crest-derived melanocytes in tailbud stage embryos. Although neural crest-derived melanocytes were markedly altered in embryos treated with estrogenic toxicants, expression of the early neural crest maker Xslug, a factor that regulates both the induction and subsequent migration of neural crest cells, was not affected, suggesting that the disruption induced by these compounds with respect to melanocyte development may occur at later stages of their differentiation. Co-incubation of embryos with the pure antiestrogen ICI 182,780 blocked the ability of nonylphenol to induce abnormalities in body shape and in melanocyte differentiation but did not block the effects of methoxychlor. Our data indicate not only that acute exposure to these environmental estrogens induces deleterious effects on early vertebrate development but also that different environmental estrogens may alter the fate of a specific cell type via different mechanisms. Finally, our data suggest that the differentiation of neural crest-derived melanocytes may be particularly sensitive to the disruptive actions of these ubiquitous chemical contaminants

    Bridging the evidence gap: A review and research protocol for outdoor mental health therapies for young Australians

    Get PDF
    Internationally, over 60% of all lifetime cases of mental health disorders are identified as emerging by 25 years of age. In Australia, young people (aged 16–24 years) report the highest prevalence of mental health problems. Acceptability of mainstream services for young people is a concern, particularly for clients 18–25 years, heterosexual males and certain marginalised communities. With unaddressed distress in young people a precursor to poor, potentially lifelong mental ill-health trajectories, the provision of acceptable, and accessible mental health services remains a critical system imperative. Outdoor therapies, such as outdoor talking therapies, present an option for increasing the breadth of mental health interventions available to young people. Reported benefits of outdoor therapies include improved self-esteem and confidence, positive and negative affect, stress reduction and restoration, social benefits, and resilience. As outdoor therapies draw on multidisciplinary skillsets, this modality has the potential to expand services beyond existing workforce capacities. However, there are evidence gaps that must be addressed before mainstreaming of this treatment modality can occur. Here we overview the existing evidence base for outdoor talking therapies, as a form of outdoor mental healthcare, to determine their appropriateness as an effective and efficient treatment modality for young people with psychological distress in Australia and elsewhere. We then propose a research protocol designed to determine the acceptability, efficacy and efficiency of ‘outdoor talking therapies’. Our aim is to help address identified youth mental healthcare service shortages in Australia, and potentially support the health of our mental healthcare workforce

    pH-dependent structural transitions in cationic ionizable lipid mesophases are critical for lipid nanoparticle function

    Get PDF
    Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m- transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.publishedVersio

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice

    Get PDF
    Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice

    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer

    Get PDF
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions

    Interactions between timing and transmissibility explain diverse flavivirus dynamics in Fiji.

    Get PDF
    Zika virus (ZIKV) has caused large, brief outbreaks in isolated populations, however ZIKV can also persist at low levels over multiple years. The reasons for these diverse transmission dynamics remain poorly understood. In Fiji, which has experienced multiple large single-season dengue epidemics, there was evidence of multi-year transmission of ZIKV between 2013 and 2017. To identify factors that could explain these differences in dynamics between closely related mosquito-borne flaviviruses, we jointly fit a transmission dynamic model to surveillance, serological and molecular data. We estimate that the observed dynamics of ZIKV were the result of two key factors: strong seasonal effects, which created an ecologically optimal time of year for outbreaks; and introduction of ZIKV after this optimal time, which allowed ZIKV transmission to persist over multiple seasons. The ability to jointly fit to multiple data sources could help identify a similar range of possible outbreak dynamics in other settings

    Genomewide association study for onset age in Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age at onset in Parkinson disease (PD) is a highly heritable quantitative trait for which a significant genetic influence is supported by multiple segregation analyses. Because genes associated with onset age may represent invaluable therapeutic targets to delay the disease, we sought to identify such genetic modifiers using a genomewide association study in familial PD. There have been previous genomewide association studies (GWAS) to identify genes influencing PD susceptibility, but this is the first to identify genes contributing to the variation in onset age.</p> <p>Methods</p> <p>Initial analyses were performed using genotypes generated with the Illumina HumanCNV370Duo array in a sample of 857 unrelated, familial PD cases. Subsequently, a meta-analysis of imputed SNPs was performed combining the familial PD data with that from a previous GWAS of 440 idiopathic PD cases. The SNPs from the meta-analysis with the lowest p-values and consistency in the direction of effect for onset age were then genotyped in a replication sample of 747 idiopathic PD cases from the Parkinson Institute Biobank of Milan, Italy.</p> <p>Results</p> <p>Meta-analysis across the three studies detected consistent association (p < 1 × 10<sup>-5</sup>) with five SNPs, none of which reached genomewide significance. On chromosome 11, the SNP with the lowest p-value (rs10767971; p = 5.4 × 10<sup>-7</sup>) lies between the genes <it>QSER1 </it>and <it>PRRG4</it>. Near the PARK3 linkage region on chromosome 2p13, association was observed with a SNP (rs7577851; p = 8.7 × 10<sup>-6</sup>) which lies in an intron of the <it>AAK1 </it>gene. This gene is closely related to <it>GAK</it>, identified as a possible PD susceptibility gene in the GWAS of the familial PD cases.</p> <p>Conclusion</p> <p>Taken together, these results suggest an influence of genes involved in endocytosis and lysosomal sorting in PD pathogenesis.</p
    corecore