18 research outputs found

    Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.

    Get PDF
    TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease

    Quantifying realized inbreeding in wild and captive animal populations

    No full text
    Most molecular measures of inbreeding do not measure inbreeding at the scale that is most relevant for understanding inbreeding depression—namely the proportion of the genome that is identical-by-descent (IBD). The inbreeding coefficient FPed obtained from pedigrees is a valuable estimator of IBD, but pedigrees are not always available, and cannot capture inbreeding loops that reach back in time further than the pedigree. We here propose a molecular approach to quantify the realized proportion of the genome that is IBD (propIBD), and we apply this method to a wild and a captive population of zebra finches (Taeniopygia guttata). In each of 948 wild and 1057 captive individuals we analyzed available single-nucleotide polymorphism (SNP) data (260 SNPs) spread over four different genomic regions in each population. This allowed us to determine whether any of these four regions was completely homozygous within an individual, which indicates IBD with high confidence. In the highly nomadic wild population, we did not find a single case of IBD, implying that inbreeding must be extremely rare (propIBD=0–0.00094, 95% CI). In the captive population, a five-generation pedigree strongly underestimated the average amount of realized inbreeding (FPed=0.013<propIBD=0.064), as expected given that pedigree founders were already related. We suggest that this SNP-based technique is generally useful for quantifying inbreeding at the individual or population level, and we show analytically that it can capture inbreeding loops that reach back up to a few hundred generations.7 page(s

    Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing

    No full text
    BACKGROUND: MicroRNAs (miRNAs) are short, noncoding RNAs with gene regulatory functions whose expression profiles may serve as disease biomarkers. OBJECTIVE: The objective of this study was to perform a comprehensive analysis of miRNA expression profiles in blood of patients with a clinically isolated syndrome (CIS) or relapsing-remitting multiple sclerosis (RRMS) including next-generation sequencing (NGS). METHODS: miRNA expression was analyzed in whole blood samples from treatment-naive patients with CIS (n = 25) or RRMS (n = 25) and 50 healthy controls by NGS, microarray analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: In patients with CIS/RRMS, NGS and microarray analysis identified 38 and eight significantly deregulated miRNAs, respectively. Three of these miRNAs were found to be significantly up- (hsa-miR-16-2-3p) or downregulated (hsa-miR-20a-5p, hsa-miR-7-1-3p) by both methods. Another five of the miRNAs significantly deregulated in the NGS screen showed the same direction of regulation in the microarray analysis. qRT-PCR confirmed the direction of regulation for all eight and was significant for three miRNAs. CONCLUSIONS: This study identifies a set of miRNAs deregulated in CIS/RRMS and reconfirms the previously reported underexpression of hsa-miR-20a-5p in MS. hsa-miR-20a-5p and the other validated miRNAs may represent promising candidates for future evaluation as biomarkers for MS and could be of relevance in the pathophysiology of this disease

    Towards a European health research and innovation cloud (HRIC)

    Full text link
    The European Union (EU) initiative on the Digital Transformation of Health and Care (Digicare) aims to provide the conditions necessary for building a secure, flexible, and decentralized digital health infrastructure. Creating a European Health Research and Innovation Cloud (HRIC) within this environment should enable data sharing and analysis for health research across the EU, in compliance with data protection legislation while preserving the full trust of the participants. Such a HRIC should learn from and build on existing data infrastructures, integrate best practices, and focus on the concrete needs of the community in terms of technologies, governance, management, regulation, and ethics requirements. Here, we describe the vision and expected benefits of digital data sharing in health research activities and present a roadmap that fosters the opportunities while answering the challenges of implementing a HRIC. For this, we put forward five specific recommendations and action points to ensure that a European HRIC: i) is built on established standards and guidelines, providing cloud technologies through an open and decentralized infrastructure; ii) is developed and certified to the highest standards of interoperability and data security that can be trusted by all stakeholders; iii) is supported by a robust ethical and legal framework that is compliant with the EU General Data Protection Regulation (GDPR); iv) establishes a proper environment for the training of new generations of data and medical scientists; and v) stimulates research and innovation in transnational collaborations through public and private initiatives and partnerships funded by the EU through Horizon 2020 and Horizon Europe
    corecore