7 research outputs found
Lymphocytic Choriomeningitis in Michigan
We summarize the first reported case of acquired lymphocytic choriomeningitis virus (LCMV) infection in Michigan to be investigated by public health authorities and provide evidence of the focal nature of LCMV infection in domestic rodents. Results of serologic and virologic testing in rodents contrasted, and negative serologic test results should be confirmed by tissue testing
Prevalence and factors affecting enuresis amongst primary school children
Aims and Objectives: The aim of the study was to establish the prevalence of enuresis in school children and to determine contributing factors along with treatment methods used in these children.
Materials and Methods: The parents of 1473 children aged between 6-10 years completed a self-administered semi-structured questionnaire. Socio-demographic profiles, enuresis data, medical and psychiatric disorders and family stressors were collected. The data was analyzed and the results presented.
Results: The response rate was 89.22%. The overall prevalence of enuresis was 7.61%. Enuresis was more common in boys. A positive family history of enuresis was seen in 28.57% children; 14.29% of the children had daytime wetting as well. Only 24.11% of the parents had taken their child to a doctor for the problem. Family stressors, significant birth history and lower socioeconomic status was present to a larger extent in the enuretic group. Scholastic backwardness was also an important factor in this group.
Conclusions: This study reports on the prevalence of enuresis in school-going children and stresses on the need for parental education and awareness about this problem
Enzyme-Linked Immunosorbent Assays Using Recombinant Envelope Protein Expressed in COS-1 and Drosophila S2 Cells for Detection of West Nile Virus Immunoglobulin M in Serum or Cerebrospinal Fluid
Humans infected with West Nile virus (WNV) develop immunoglobulin M (IgM) antibodies soon after infection. The microtiter-based assays for WNV IgM antibody detection used by most state public health and reference laboratories utilize WNV antigen isolated from infected Vero cells or recombinant envelope protein produced in COS-1 cells. Recombinant antigen produced in COS-1 cells was used to develop a WNV IgM capture enzyme immunoassay (EIA). A supplementary EIA using WNV envelope protein expressed in Drosophila melanogaster S2 cells was also developed. Both assays detected WNV IgM in the sera of experimentally infected rhesus monkeys within approximately 10 days postinfection. Human sera previously tested for WNV IgM at a state public health laboratory (SPHL) were evaluated using both EIAs. Among the sera from 20 individuals with laboratory-confirmed WNV infection (i.e., IgM-positive cerebrospinal fluid [CSF]) that were categorized as equivocal for WNV IgM at the SPHL, 19 were IgM positive and one was negative by the new EIAs. Of the 19 IgM-positive patients, 15 were diagnosed with meningitis or encephalitis; the IgM-negative patient was not diagnosed with neurological disease. There was 100% agreement between the EIAs for the detection of WNV IgM. CSF samples from 21 individuals tested equivocal for WNV IgM at the SPHL; all 21 were positive in both bead assays, and 16 of these patients were diagnosed with neurological disease. These findings demonstrate that the new EIAs accurately identify WNV infection in individuals with confirmed WNV encephalitis and that they exhibit enhanced sensitivity over that of the microtiter assay format
HDV RNA Assays : Performance characteristics, clinical utility and challenges
Coinfection with HBV and HDV results in hepatitis D, the most severe form of chronic viral hepatitis, frequently leading to liver decompensation and HCC. Pegylated interferon alpha, the only treatment option for chronic hepatitis D for many years, has limited efficacy. New treatments are in advanced clinical development, with one recent approval. Diagnosis and antiviral treatment response monitoring are based on detection and quantification of HDV RNA. However, the development of reliable HDV RNA assays is challenged by viral heterogeneity (at least 8 different genotypes and several subgenotypes), intrahost viral diversity, rapid viral evolution, and distinct secondary structure features of HDV RNA. Different RNA extraction methodologies, primer/probe design for nucleic acid tests, lack of automation, and overall dearth of standardization across testing laboratories contribute to substantial variability in performance characteristics of research-based and commercial HDV RNA assays. A World Health Organization (WHO) standard for HDV RNA, available for about 10 years, has been used by many laboratories to determine the limit of detection of their assays and facilitates comparisons of RNA levels across study centers. Here we review challenges for robust pan genotype HDV RNA quantification, discuss particular clinical needs and the importance of reliable HDV RNA quantification in the context of drug development and patient monitoring. We summarize distinct technical features and performance characteristics of available HDV RNA assays. Finally, we provide considerations for the use of HDV RNA assays in the context of drug development and patient monitoring