177 research outputs found

    Cytokine gene polymorphisms in preterm infants with necrotising enterocolitis: genetic association study

    Get PDF
    BACKGROUND The inflammatory cytokine cascade is implicated in the pathogenesis of necrotising enterocolitis (NEC). Genetic association studies of cytokine polymorphisms may help to detect molecular mechanisms that are causally related to the disease process. AIM To examine associations between the common genetic variants in candidate inflammatory cytokine genes and NEC in preterm infants. METHODS Multi-centre case-control and genetic association study. DNA samples were collected from 50 preterm infants with NEC and 50 controls matched for gestational age and ethnic group recruited to a multi-centre case-control study. Ten candidate single-nucleotide polymorphisms in cytokines previously associated with infectious or inflammatory diseases were genotyped. The findings were included in random-effects meta-analyses with data from previous genetic association studies. RESULTS All allele distributions were in Hardy-Weinberg equilibrium. None of the studied cytokine polymorphisms was significantly associated with NEC. Four previous genetic association studies of cytokine polymorphisms and NEC in preterm infants were found. Meta-analyses were possible for several single-nucleotide polymorphisms. These increased the precision of the estimates of effect size but did not reveal any significant associations. CONCLUSIONS The available data are not consistent with more than modest associations between these candidate cytokine variant alleles and NEC in preterm infants. Data from future association studies of these polymorphisms may be added to the meta-analyses to obtain more precise estimates of effects sizes.The study was funded by Tenovus (Scotland)

    Characterisation of Self-locking High-contraction Electro-ribbon Actuators*

    Get PDF

    Identifying circumstances under which high insecticide dose increases or decreases resistance selection

    Get PDF
    Insect management strategies for agricultural crop pests must reduce selection for insecticide resistant mutants while providing effective control of the insect pest. One management strategy that has long been advocated is the application of insecticides at the maximum permitted dose. This has been found, under some circumstances, to be able to prevent the resistance allele frequency from increasing. However this approach may, under different circumstances, lead to rapid selection for resistance to the insecticide. To test when a high dose would be an effective resistance management strategy, we present a flexible deterministic model of a population of an insect pest of agricultural crops. The model includes several possible life-history traits including sexual or asexual reproduction, diploid or haplodiploid genetics, univoltine or multivoltine life cycle, so that the high dose strategy can be tested for many different insect pests. Using this model we aim to identify the key characteristics of pests that make either a high dose or a low dose of insecticide optimal for resistance management. Two outputs are explored: firstly whether the frequency of the resistance allele increases over time or remains low indefinitely; and secondly whether lowering the dose of insecticide applied reduces or increases the rate of selection for the resistance allele. It is demonstrated that with high immigration resistance can be suppressed. This suppression however, is rarely lost if the insecticide dose is reduced, and is absent altogether when individuals move from the treated population back into an untreated population. Reducing the dose of insecticide often resulted in slower development of resistance, except where the population combined a high influx of less resistant individuals into the treated population, a recessive resistance gene and a high efficacy, in which case reducing the dose of insecticide could result in faster selection for resistance

    Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping

    Get PDF

    Non-ribosomal phylogenetic exploration of Mollicute species:New insights into haemoplasma taxonomy

    Get PDF
    AbstractNine species of uncultivable haemoplasmas and several Mycoplasma species were examined by partial sequencing of two protein-encoding housekeeping genes. Partial glyceraldehyde-3-phosphate dehydrogenase (gapA) and heat shock protein 70 (dnaK) gene sequences were determined for these Mollicute species; in total nine gapA sequences and ten dnaK sequences were obtained. Phylogenetic analyses of these sequences, along with those of a broad selection of Mollicute species downloaded from GenBank, for the individual genes, and for the gapA and dnaK concatenated data set, revealed a clear separation of the haemoplasmas from other species within the Mycoplasma genus; indeed the haemoplasmas resided within a single clade which was phylogenetically detached from the pneumoniae group of Mycoplasmas. This is the first report to examine the use of gapA and dnaK, as well as a concatenated data set, for phylogenetic analysis of the haemoplasmas and other Mollicute species. These results demonstrate a distinct phylogenetic separation between the haemoplasmas and Mycoplasmas that corresponds with the biological differences observed in these species, indicating that further evaluation of the haemoplasmas’ relationship with the Mycoplasma genus is required to determine whether reclassification of the haemoplasmas is necessary

    Haemoparasites of free-roaming dogs associated with several remote Aboriginal communities in Australia

    Get PDF
    BACKGROUND: Tick-borne haemoparasites Babesia vogeli and Anaplasma platys are common among the free-roaming canine populations associated with Aboriginal communities in Australia, whilst the prevalence of haemoplasmas, which are also suspected to be tick-borne, remained unexplored. The aim of this study was to determine the prevalence of haemoplasma infection in these populations, and to identify any correlation with other haemoparasites. Blood was collected from 39 dogs associated with four Aboriginal communities and screened for infection using PCR and serology. DNA was purified and PCR analyses for piroplasms, Anaplasmataceae family bacteria and haemoplasmas performed. Serum was analysed using a commercial haemoparasite ELISA. Prevalence of infection was compared between communities. RESULTS: Seventeen dogs (44%) were infected (PCR positive) with Mycoplasma haemocanis, eight (21%) with ‘Candidatus Mycoplasma haematoparvum’, 20 (51%) with A. platys, and 17 (44%) with B. vogeli. Two dogs were infected with a novel haemoplasma as determined by DNA amplification and sequencing. Two dogs (5%) were serologically positive for Dirofilaria immitis antigens, one (3%) was positive for Ehrlichia canis antibodies and nine (24nbsp;%) were positive for A. platys antibodies. Co-infections were frequent. Haemoplasma prevalence was highest (73%, 16/22) in Central Australia and lowest (22%, 2/9) in Western Australia (p = 0.017). In contrast, B. vogeli prevalence was low in Central Australia (18%, 4/22) but higher (78%, 7/9) in Western Australia (p = 0.003). CONCLUSIONS: This is the first time haemoplasma infections, including a novel species, have been molecularly documented in Australian dogs. The wide regional variation in prevalence of some of the haemoparasite infections detected in this study warrants further investigation

    Evaluation of interferon-gamma polymorphisms as a risk factor in feline infectious peritonitis development in non-pedigree cats:a large cohort study

    Get PDF
    Feline infectious peritonitis (FIP) is a common infectious cause of death in cats, with heritable host factors associated with altered risk of disease. To assess the role of feline interferon-gamma gene (fIFNG) variants in this risk, the allele frequencies of two single nucleotide polymorphisms (SNPs) (g.401 and g.408) were determined for non-pedigree cats either with confirmed FIP (n = 59) or from the general population (cats enrolled in a large lifetime longitudinal study; n = 264). DNA was extracted from buccal swabs or tissue samples. A pyrosequencing assay to characterize the fIFNG SNPs was designed, optimized and subsequently performed on all samples. Genotype and allele frequency were calculated for each population. Characterization of the target SNPs was possible for 56 of the cats with FIP and 263 of the cats from the general population. The SNPs were in complete linkage disequilibrium with each other. There was an association between FIP status and genotype (χ2; p = 0.028), with a reduced risk of developing FIP (χ2; p = 0.0077) associated with the genotype TT at both positions. These results indicate that, although fIFNG variants may be associated with altered risk of disease, the prevalence of individual variants within both populations limits application of their characterization to breeding purpose

    A novel variant in CMAH is associated with blood type AB in Ragdoll cats

    Get PDF
    Citation: Gandolfi, B., Grahn, R. A., Gustafson, N. A., Proverbio, D., Spada, E., Adhikari, B., . . . Helps, C. R. (2016). A novel variant in CMAH is associated with blood type AB in Ragdoll cats. Plos One, 11(5). doi:10.1371/journal.pone.0154973The enzyme cytidine monophospho-N-acetylneuraminic acid hydroxylase is associated with the production of sialic acids on cat red blood cells. The cat has one major blood group with three serotypes; the most common blood type A being dominant to type B. A third rare blood type is known as AB and has an unclear mode of inheritance. Cat blood type antigens are defined, with N-glycolylneuraminic acid being associated with type A and N-acetylneuraminic acid with type B. Blood type AB is serologically characterized by agglutination using typing reagents directed against both A and B epitopes. While a genetic characterization of blood type B has been achieved, the rare type AB serotype remains genetically uncharacterized. A genome-wide association study in Ragdoll cats (22 cases and 15 controls) detected a significant association between blood type AB and SNPs on cat chromosome B2, with the most highly associated SNP being at position 4,487,432 near the candidate gene cytidine monophospho-N-acetylneuraminic acid hydroxylase. A novel variant, c.364C>T, was identified that is highly associated with blood type AB in Ragdoll cats and, to a lesser degree, with type AB in random bred cats. The newly identified variant is probably linked with blood type AB in Ragdoll cats, and is associated with the expression of both antigens (N-glycolylneuraminic acid and N-acetylneuraminic acid) on the red blood cell membrane. Other variants, not identified by this work, are likely to be associated with blood type AB in other breeds of cat. © 2016 Gandolfi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    corecore