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Abstract: Feline infectious peritonitis (FIP) is a common infectious cause of death in cats, with heritable
host factors associated with altered risk of disease. To assess the role of feline interferon-gamma
gene (fIFNG) variants in this risk, the allele frequencies of two single nucleotide polymorphisms
(SNPs) (g.401 and g.408) were determined for non-pedigree cats either with confirmed FIP (n = 59) or
from the general population (cats enrolled in a large lifetime longitudinal study; n = 264). DNA was
extracted from buccal swabs or tissue samples. A pyrosequencing assay to characterize the fIFNG
SNPs was designed, optimized and subsequently performed on all samples. Genotype and allele
frequency were calculated for each population. Characterization of the target SNPs was possible for
56 of the cats with FIP and 263 of the cats from the general population. The SNPs were in complete
linkage disequilibrium with each other. There was an association between FIP status and genotype
(χ2; p = 0.028), with a reduced risk of developing FIP (χ2; p = 0.0077) associated with the genotype TT
at both positions. These results indicate that, although fIFNG variants may be associated with altered
risk of disease, the prevalence of individual variants within both populations limits application of
their characterization to breeding purposes.

Keywords: cohort study; feline coronavirus; gamma interferon; genetic risk factor; pyrosequencing

1. Introduction

Feline infectious peritonitis (FIP) is a common infectious cause of death in cats [1]. The causative
agent is feline coronavirus (FCoV), which is endemic in the feline population worldwide and commonly
only elicits mild or inapparent intestinal disease [2]. Seroprevalence studies have shown that in some
multi-cat households over 90% of cats have evidence of exposure to FCoV [3], but that less than 5% of
infected cats will go on to develop FIP [4].
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In addition to viral factors, the increased incidence of FIP within related groups of cats supports
the existence of heritable host factors [5,6]. North American and Australian studies have shown
pedigree cats, in general, to be at an increased risk of developing FIP, as compared to non-pedigree
cats [7–10], whilst intercontinental variation in which breeds appear to be at greater, or lesser, risk was
also evident. In contrast, no association between pedigree status and risk of FIP was detected in a recent
German study [1]; however, the risk of individual breeds was not assessed. Numerous studies have
implicated the inflammatory cytokine interferon-gamma in the pathogenesis of FIP [11–13]. Sequencing
of fragments of the feline interferon-gamma gene (fIFNG) in a mixed population of cats, with and
without FIP, found an increased risk of FIP associated with a heterozygous genotype (CT) at two closely
sited SNPs, g.401 and g.408, which were also found to be in complete linkage disequilibrium [14].
Another study identified an increased frequency of these fIFNG single nucleotide polymorphisms
(SNPs) in pedigree cats with FIP; however, small numbers limited statistical analysis [15]. Based on
these very limited data, commercial assays for these and other SNPs are available, with the suggestion
that they could be used to indicate genetic risk of FIP. Out-crossing with non-pedigree cats has been
suggested to increase genetic diversity and reduce risk of various genetic diseases [16]; however,
the prevalence of allele frequency in the general non-pedigree cat population could have a potentially
detrimental impact were it unknown.

The aims of the present study is to (i) determine the fIFNG allele frequency within a population of
non-pedigree cats confirmed as having FIP by histopathology and immunohistochemistry for FCoV
antigen; (ii) determine the fIFNG allele frequency within the “general non-pedigree cat population” as
represented by a large cohort of prospectively-sampled cats recruited into a lifetime longitudinal study
for which epidemiological data are available; (iii) determine the relative risk conferred by specific
fIFNG polymorphisms in the development of FIP. It was hypothesized that non-pedigree cats with FIP
were more likely to have the heterozygous genotype previously associated with increased risk of FIP.

2. Results

2.1. Population

All cats from the FIP group had the diagnosis confirmed by immunohistochemistry for FCoV
antigen in one or more tissue (n = 34) or in effusion pellets (n = 25); viral antigen was found to be
expressed in lesional macrophages. One duplicate cat was excluded from the effusion pellet group.
Where sex was recorded (n = 43), 26% were female (n = 11) and 74% were male (n = 32). Where age
was reported (n = 47), median age at diagnosis of FIP was 12 months (range 2 to 168 months).

Of the General Population group (n = 264), 205 remained in the study (i.e., assumed to be alive),
nine had been lost to follow-up (i.e., cat rehomed or owner withdrawn from study) and 50 were
deceased as of 1 April, 2020. Of the alive cats, all were >6 years of age (median age 104 months;
range 72 to 120 months). Of the cats that were deceased, cause of death was reported by owners in 44
(88%): 24 from road traffic injuries; five from chronic kidney disease; three from neoplasia; two from
heart disease; two from neurological problems; two from trauma (unrelated to road traffic injuries);
one each of pyothorax, anesthetic complications at neutering, behavioral issues, feline dysautonomia,
”viral infection” and toxoplasmosis. None of the reported clinical signs or diagnoses were indicative of
FIP. Where sex was recorded (n = 264), 44% were female (n = 116) and 56% were male (n = 148).

2.2. fIFNG SNPs

Characterization of the fIFNG g.401 and g.408 SNPs was possible for all tissue samples (n = 34),
for 92% of the effusion pellets (n = 22 of 24) and 99.6% (n = 263 of 264) of the buccal swab samples.
Table 1 shows the frequency of each genotype and allele at these SNPs for the FIP group and General
Population group.
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Table 1. Total number and frequency percentage of each genotype and allele at the feline interferon-γ
gene (fIFNG) single nucleotide polymorphisms (SNPs) g.401 and g.408 for both feline infectious
peritonitis (FIP) group and General Population group of non-pedigree cats for which sequence data
were obtained. P-value indicates likelihood that a genotype or allele is associated with FIP status.
* For individual cats, identical genotypes were determined at both fIFNG g.401 and fIFNG g.408 loci,
indicative of complete linkage disequilibrium.

SNP FIP Group (%) General
Population (%) p-Value

fIFNG g.401/ CC 16 (28.6) 57 (21.7)
fIFNG g.408 * CT 31 (55.4) 116 (44.1) 0.028

TT 9 (16.1) 90 (34.2)
Allele C 63 (56.3) 230 (43.7) 0.016
Allele T 49 (43.8) 296 (56.3)

A chi-square test of independence showed that there was no association between sex and genotype
for either the FIP group (χ2 (2, n = 41) = 2.61, p = 0.271) or the General Population (χ2 (2, n = 263) = 3.19,
p = 0.203).

A chi-square test of independence showed that there was a significant association between FIP
status and genotype, χ2 (2, n = 319) = 7.13, p = 0.028. This significance was due to the decreased
proportion of TT homozygotes in the FIP group (p = 0.0077), whereas there was no significant difference
between the proportion of CC homozygotes (p = 0.265) and CT heterozygotes (p = 0.125). A chi-square
test of independence also showed that there was a significant association between FIP status and allele
frequency, χ2 (1, n = 638) = 5.83, p = 0.016. This significance was due to a decreased frequency of T
allele within the FIP group.

3. Discussion

This study assessed the prevalence of fIFNG SNPs, previously associated with FIP, within
non-pedigree domestic cat populations, either from cats previously recruited into a biobank primarily
for the study of feline disease and with confirmed FIP, or from cats recruited into a longitudinal cohort
study of cat health (representative of the general population). Non-pedigree cats were selected, in part
for their genetic heterogeneity (i.e., to minimize breed bias), as they represent over 80% of the cats
with FIP [1]. The FIP group statistics were consistent with previous descriptions of cats with FIP
i.e., male cats were over-represented, as were young adult cats, albeit with a wide age range [1,17].
As expected, given the presence of fIFNG on an autosomal chromosome, there was no association
between sex and genotype for the General Population group. The lack of association between sex
and fIFNG genotype for the FIP group is not supportive of these SNPs influencing the sex bias in the
development of FIP.

Nucleotide variations within the genome (e.g., SNPs) may influence activity of the associated
protein(s) by altering the translated amino-acid sequence (e.g., by missense or nonsense changes
to the exonic sequence, or changes to the intronic sequence resulting in altered splicing of the
transcribed messenger RNA) or by relatively increasing or decreasing the amount of the gene that
is transcribed and ultimately translated into interferon-gamma (IFN-γ). Sequencing of various
genes encoding inflammatory mediators have identified SNPs and their genotype variants with
either increased or decreased prevalence in populations of cats with FIP, as compared to control
populations [14,18], including SNPs in non-coding intronic regions of fIFNG [14]. This led to the
suggestion that characterization of feline inflammatory mediator SNPs could be used to guide breeding
of cats with increased resistance to FIP [18]. Although our data are consistent with the previous finding
of fIFNG loci g.401 and g.408 being in complete linkage disequilibrium and an association between
these loci and risk of FIP, that is where the agreement ends [14,15]. The initial fIFNG study had found
cats with FIP (mixed pedigree and non-pedigree) to be twice as likely as the control cats to have
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heterozygous genotypes at positions g.401/g.408 (62.1%, n = 18/29 cf. 31.7%, n = 26/82; Fisher exact
0.004) [14]. A more recent study of cats (various pedigree breeds) found a similar increased frequency
of the heterozygous genotype (59%, n = 13/22 cf. 23%, n = 3/13); however, this was not found to
be statistically significant [15]. It should be noted that in both of these studies [14,15], a significant
proportion of control (i.e., non-FIP) cats had the heterozygous genotype, whilst ~40% of cats with
FIP did not. Although the current study found an association between genotypes at these loci and
risk of FIP, this was attributed to the decreased prevalence of TT homozygotes within the FIP group,
as compared to the General Population group.

Following initial infection of enterocytes, FCoV infects macrophages and monocytes where it
replicates; the latter mediate its systemic spread [19]. In cats that go on to develop FIP, an excessive and
inappropriate immune-response results in the monocyte-mediated granulomatous vasculitis and tissue
granulomas, sequelae of which include the body cavity effusions and mass lesions [2]. Higher rates of
fIFNG transcription and IFN-γ concentrations have been found in the blood of healthy cats infected
with FCoV as compared to those that have developed FIP, leading to the suggestion that a reduced risk
of FIP is associated with a strong cell-mediated (i.e., Th1) immunity [11,12]. Support for dysregulation
of the IFN-γ/tumor necrosis factor-alpha (TNF-α) response being a host-associated risk factor in the
development of FIP comes from a vaccination study where an increased ratio of IFN-γ to TNF-α was
associated with decreased risk of developing FIP, and vice versa [13]. Paradoxically, high concentrations
of IFN-γ have been measured in FIP-associated ascitic fluid, despite these cats having low blood
concentrations, suggesting that it might not be as simple as an absence of cell-mediated immunity in FIP
pathogenesis [12]. Furthermore, transcriptomics have demonstrated inflammatory pathway activation
in the mesenteric lymph nodes of cats with FIP, with upregulated transcription of inflammatory
cytokines (including IFN-γ) and chemokines [20]. Whether the intronic fIFNG SNPs associated with
risk of FIP assessed in this study alter IFN-γ production in response to infection with FCoV is unknown,
but warrants further investigation. Such studies may be confounded by the suspected polygenic nature
of risk of FIP development, or the presence of unknown, but linked, genetic variants [6,18].

Differences in allele/genotype prevalence between this and other studies could be due to the
different genetic backgrounds of the populations studied. This is why the two populations used in
this study were selected for comparison, so as to minimize collection bias and breed-associated allele
frequency bias; however, the possibility for genetic variation between the two populations compared
cannot be excluded. This was also a limitation in the previous studies evaluating inflammatory
mediators as risk factors in FIP [14,18], if not more so as a combination of both pedigree and
non-pedigree cats were included in those populations. It is also possible that were more cats with
FIP included then minor risk factors might have been detected; however, these would not have been
considered clinically relevant. The optimum control population against which cats with FIP would
ideally be compared is subject to debate. The General Population group used for comparison with the
FIP group cannot be considered ”FIP-negative” as, although none were reported as having died of
FIP, definitive data on cause of death were not available for all deceased cats. Further, a significant
proportion of cats in the General Population group remain alive at time of writing and therefore have
the potential, albeit very low as they are all now >6 years of age, to go on to develop FIP. However,
these limitations are shared by the control groups used in other studies [14,18]. Unlike these previous
studies where clinically normal control cats had been or currently were infected with FCoV, whether
cats recruited into the General Population group had been or were currently infected with FCoV was
unknown. However, as exposure to FCoV should be independent of genetic status, the prevalence
of genetic polymorphisms in the general population as a whole would match that of cats from the
general population also exposed to FCoV.
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4. Materials and Methods

4.1. Animals and Samples

The FIP group comprised non-pedigree cats of UK origin confirmed as having FIP within the
Bristol-Zurich FIP Consortium University of Bristol FIP Biobank or Veterinary Laboratory Services,
University of Liverpool archive. The General Population group comprised prospectively sampled
non-pedigree cats recruited into a lifetime longitudinal study (Bristol Cats) for which epidemiological
data are available. Non-pedigree cats were those recorded as being domestic short-haired, domestic
medium-haired or domestic long-haired.

For those in Bristol FIP Biobank, tissue samples were collected at post-mortem examination
as previously described [17]. For the cats from the Veterinary Laboratory Services, University of
Liverpool, sections of paraffin blocks prepared from formalin-fixed effusion cell pellets were available.
These samples had been submitted for immunohistopathology for FCoV antigen for confirmation
of effusive FIP [21]. Only basic data, i.e., age, sex and year submitted, were available for most cats.
Duplicate cats were excluded.

The Bristol Cats study is a pioneering study of cat health, welfare and behavior set up in 2010 and
run by vets, behaviorists and epidemiologists at the University of Bristol [22]. Pet cats of all breeds were
recruited into Bristol Cats from 2010 to 2013, and provided buccal swab samples from Spring 2012 to
Spring 2015. Owners also completed periodic questionnaires regarding their cat’s health and behavior.
The Bristol Cats study database was reviewed for non-pedigree cats for which buccal samples were
available and for which permissions to use their data were available (n = 264). Cats were considered to
be alive if owners had completed the most recent questionnaire and not requested withdrawal from
the study. Cats were considered to be lost to follow-up if owners had requested withdrawal from the
study but not reported death. Where reported by owners, cause of death and exact age at time of death
was recorded. Where exact dates were not available, the half-way date between the last completed
questionnaire and owner report of death or withdrawal from the study was used to calculate age at
death or time of censor. Sex was recorded for all cats.

The collection, storage and use of samples used in this project were approved under ethical
review by the University of Bristol Animal Welfare and Ethical Review Board (VIN/14/013; VIN/16/020;
VIN/18/007; UIN/13/026), whilst the use of samples from the Veterinary Laboratory Services, University
of Liverpool archive also falls under the generic approval of retrospective analysis of formalin-fixed
paraffin-embedded (FFPE) blocks of animal tissues in the Section of Pathology, Department of Veterinary
Pathology and Public Health, University of Liverpool (RETH000942).

4.2. DNA Extraction, Amplification and Sequencing

Feline genomic DNA was extracted from samples from the Bristol FIP Biobank as previously
described for total nucleic acids [20]. Feline genomic DNA was extracted from sections from the
paraffin blocks and from the buccal swabs using a Chemagic 360 automated platform (Perkin-Elmer)
in combination with the Chemagic body fluids nucleic acid kit (Perkin-Elmer) and eluted in elution
buffer (100 µL).

A PCR to amplify a fragment of the fIFNG gene containing the target SNPs was performed using 2x
GoTaq Master Mix (Promega), 200nM forward and reverse amplification primers (see Table 2) and 5 µL
DNA in a total volume of 25µL. Thermal cycling was performed in a PTC-200 DNA Engine (MJ Research)
with the following thermal profile: 95 ◦C for 2 min followed by 40 cycles of 95 ◦C for 20 s, 60 ◦C for 20 s
and 72 ◦C for 20 s. Pyrosequencing primers (Table 2) were designed using a combination of PyroMark
assay design software (Qiagen), Primer3 [23] and MFold [24], and were made by Metabion (Metabion
International). Biotinylated PCR products were immobilized on streptavidin-coated Sepharose beads
(GE Healthcare UK Ltd.), purified and annealed with the sequencing primer. Pyrosequencing was
performed using the PyroMark Q96 platform (Qiagen) according to the manufacturer’s instructions



Pathogens 2020, 9, 535 6 of 8

with a nucleotide dispensation order of GCTATAGCACTGTG. Pyrosequencing data were evaluated
using PyroMark Q96 v2.5 software (Qiagen Inc.).

Table 2. Primers used in PCR amplification and pyrosequencing of the fIFNG gene.

Primer Use Direction Sequence

Amplification Sense 5′-TGGGTATAAAGGACAGTGATGTCG-3′

Amplification Anti-sense 5′-Biotin-TTCTTCATGCTAACCCTGACCTT-3′

Sequencing Sense 5′-GATAATTTTGTGGTGAGAATC-3′

4.3. Data Analysis

Data (comprising: group (FIP or General Population); cat identification number; age (in months)
at time of FIP diagnosis, death, loss from follow-up, or at 1 April, 2020, if alive; diagnosis (FIP; alive;
lost to follow-up; died, and cause where recorded); fIFNG SNP at g.401 and g.408; reason for exclusion
(where applicable)) were entered into a database (Microsoft Excel for Mac v16.16; Supplementary File
Table S1).

SNPs were described relative to their genomic position from the “A” of the start codon of
fIFNG. Comparisons for each genotype and allele frequency for the cats with FIP vs. the general
population (Bristol Cats) were analyzed using a chi-square test. A p-value of ≤0.05 was considered
statistically significant.

5. Conclusions

The results of our study do not support the hypothesis that non-pedigree cats with FIP were more
likely to have the heterozygous fIFNG genotype than non-pedigree cats in the general population.
The results did indicate a negative association between the TT genotype at fIFNG g.401/g.408 and the
development of FIP. However, as the TT genotype at this position was present in 16% (n = 9/56) of cats
with FIP and absent in 66% (173/263) of cats in the general population, and as the previously reported
associations between genotype and risk at these loci were not detected in this population, the clinical
application of characterization of these SNPs, both on an individual risk basis and to guide breeding
programs, cannot be recommended at this time.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-0817/9/7/535/s1,
Table S1: Group, signalment data, diagnosis and sequencing results for the cats included in the study.
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