2,332 research outputs found
Consequences of wall stiffness for a beta-soft potential
Modifications of the infinite square well E(5) and X(5) descriptions of
transitional nuclear structure are considered. The eigenproblem for a potential
with linear sloped walls is solved. The consequences of the introduction of
sloped walls and of a quadratic transition operator are investigated.Comment: RevTeX 4, 8 pages, as published in Phys. Rev.
Argentina spectral-agronomic multitemporal data set
A multitemporal LANDSAT spectral data set was created. The data set is over five 5 nm-by-6 nm areas over Argentina and contains by field, the spectral data, vegetation type and cloud cover information
iSPOT: A web tool to infer the interaction specificity of families of protein modules
iSPOT (http://cbm.bio.uniroma2.it/ispot) is a web tool developed to infer the recognition specificity of protein module families; it is based on the SPOT procedure that utilizes information from position-specific contacts, derived from the available domain/ligand complexes of known structure, and experimental interaction data to build a database of residue-residue contact frequencies. iSPOT is available to infer the interaction specificity of PDZ, SH3 and WW domains. For each family of protein domains, iSPOT evaluates the probability of interaction between a query domain of the specified families and an input protein/peptide sequence and makes it possible to search for potential binding partners of a given domain within the SWISS-PROT database. The experimentally derived interaction data utilized to build the PDZ, SH3 and WW databases of residue-residue contact frequencies are also accessible. Here we describe the application to the WW family of protein modules
On the zero set of G-equivariant maps
Let be a finite group acting on vector spaces and and consider a
smooth -equivariant mapping . This paper addresses the question of
the zero set near a zero of with isotropy subgroup . It is known
from results of Bierstone and Field on -transversality theory that the zero
set in a neighborhood of is a stratified set. The purpose of this paper is
to partially determine the structure of the stratified set near using only
information from the representations and . We define an index
for isotropy subgroups of which is the difference of
the dimension of the fixed point subspace of in and . Our main
result states that if contains a subspace -isomorphic to , then for
every maximal isotropy subgroup satisfying , the zero
set of near contains a smooth manifold of zeros with isotropy subgroup
of dimension . We also present a systematic method to study
the zero sets for group representations and which do not satisfy the
conditions of our main theorem. The paper contains many examples and raises
several questions concerning the computation of zero sets of equivariant maps.
These results have application to the bifurcation theory of -reversible
equivariant vector fields
Neutron Capture Cross Sections for the Weak s Process
In past decades a lot of progress has been made towards understanding the
main s-process component that takes place in thermally pulsing Asymptotic Giant
Branch (AGB) stars. During this process about half of the heavy elements,
mainly between 90<=A<=209 are synthesized. Improvements were made in stellar
modeling as well as in measuring relevant nuclear data for a better description
of the main s process. The weak s process, which contributes to the production
of lighter nuclei in the mass range 56<=A<=90 operates in massive stars
(M>=8Msolar) and is much less understood. A better characterization of the weak
s component would help disentangle the various contributions to element
production in this region. For this purpose, a series of measurements of
neutron-capture cross sections have been performed on medium-mass nuclei at the
3.7-MV Van de Graaff accelerator at FZK using the activation method. Also,
neutron captures on abundant light elements with A<56 play an important role
for s-process nucleosynthesis, since they act as neutron poisons and affect the
stellar neutron balance. New results are presented for the (n,g) cross sections
of 41K and 45Sc, and revisions are reported for a number of cross sections
based on improved spectroscopic information
Revealing protein-lncRNA interaction
Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein-RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP-lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein-lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations
T Cell Leukemia/Lymphoma 1A is essential for mouse epidermal keratinocytes proliferation promoted by insulin-like growth factor 1
T Cell Leukemia/Lymphoma 1A is expressed during B-cell differentiation and, when overexpressed, acts as an oncogene in mouse (Tcl1a) and human (TCL1A) B-cell chronic lymphocytic leukemia (B-CLL) and T-cell prolymphocytic leukemia (T-PLL). Furthermore, in the murine system Tcl1a is expressed in the ovary, testis and in pre-implantation embryos, where it plays an important role in blastomere proliferation and in embryonic stem cell (ESC) proliferation and self-renewal. We have also observed that Tcl1-/-adult mice exhibit alopecia and deep ulcerations. This finding has led us to investigate the role of TCL1 in mouse skin and hair follicles. We have found that TCL1 is expressed in the proliferative structure (i.e.The secondary hair germ) and in the stem cell niche (i.e.The bulge) of the hair follicle during regeneration phase and it is constitutively expressed in the basal layer of epidermis where it is required for the correct proliferative-differentiation program of the keratinocytes (KCs). Taking advantage of the murine models we have generated, including the Tcl1-/-and the K14-TCL1 transgenic mouse, we have analysed the function of TCL1 in mouse KCs and the molecular pathways involved. We provide evidence that in the epidermal compartment TCL1 has a role in the regulation of KC proliferation, differentiation, and apoptosis. In particular, the colony-forming efficiency (CFE) and the insulin-like growth factor 1 (IGF1)-induced proliferation are dramatically impaired, while apoptosis is increased, in KCs from Tcl1-/-mice when compared to WT. Moreover, the expression of differentiation markers such as cytokeratin 6 (KRT6), filaggrin (FLG) and involucrin (IVL) are profoundly altered in mutant mice (Tcl1-/-). Importantly, by over-expressing TCL1A in basal KCs of the K14-TCL1 transgenic mouse model, we observed a significant rescue of cell proliferation, differentiation and apoptosis of the mutant phenotype. Finally, we found TCL1 to act, at least in part, via increasing phospho-ERK1/2 and decreasing phospho-P38 MAPK. Hence, our data demonstrate that regulated levels of Tcl1a are necessary for the correct proliferation and differentiation of the interfollicular KC
- …