59 research outputs found

    White Matter Hyperintensities in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Knowledge Gaps and Opportunities

    Get PDF
    White matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer\u27s disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions about WMHs and their relation to cognition, dementia, and AD. What molecular and cellular changes underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demyelination and inflammation present? Is it helpful to subdivide into periventricular and subcortical WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for developing WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions will improve prevention and treatment of WMHs and dementia

    LINE-1 Evasion of Epigenetic Repression in Humans

    Get PDF
    Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in\ua0vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body

    Video Chat at the Front Desk

    No full text
    This column describes an approach to helping patrons in the physical library through a telepresence service, while maintaining a safe environment during the COVID-19 pandemic. This video chat service was achieved using the WebEx meeting platform and an iPad, which was later upgraded to a Cisco WebEx DX80 display

    In Vitro Consequences of Electronic-Cigarette Flavoring Exposure on the Immature Lung

    No full text
    Background: The developing lung is uniquely susceptible and may be at increased risk of injury with exposure to e-cigarette constituents. We hypothesize that cellular toxicity and airway and vascular responses with exposure to flavored refill solutions may be altered in the immature lung. Methods: Fetal, neonatal, and adult ovine pulmonary artery smooth muscle cells (PASMC) were exposed to popular flavored nicotine-free e-cigarette refill solutions (menthol, strawberry, tobacco, and vanilla) and unflavored solvents: propylene glycol (PG) or vegetable glycerin (VG). Viability was assessed by lactate dehydrogenase assay. Brochodilation and vasoreactivity were determined on isolated ovine bronchial rings (BR) and pulmonary arteries (PA). Results: Neither PG or VG impacted viability of immature or adult cells; however, exposure to menthol and strawberry flavored solutions increased cell death. Neonatal cells were uniquely susceptible to menthol flavoring-induced toxicity, and all four flavorings demonstrated lower lethal doses (LD50) in immature PASMC. Exposure to flavored solutions induced bronchodilation of neonatal BR, while only menthol induced airway relaxation in adults. In contrast, PG/VG and flavored solutions did not impact vasoreactivity with the exception of menthol-induced relaxation of adult PAs. Conclusion: The immature lung is uniquely susceptible to cellular toxicity and altered airway responses with exposure to common flavored e-cigarette solutions
    corecore