597 research outputs found
Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates
We theoretically investigate an adjustable-radius magnetic storage ring for
laser-cooled and Bose-condensed atoms. Additionally, we discuss a novel
time-dependent variant of this and other ring traps. Time-orbiting ring traps
provide a high optical access method for spin-flip loss prevention near a
storage ring's circular magnetic field zero. Our scalable storage ring will
allow one to probe the fundamental limits of condensate Sagnac interferometry.Comment: 5 pages, 3 figures. accepted in J Phys
Evidence of Luttinger liquid behavior in one-dimensional dipolar quantum gases
The ground state and structure of a one-dimensional Bose gas with dipolar
repulsions is investigated at zero temperature by a combined Reptation Quantum
Monte Carlo (RQMC) and bosonization approach. A non trivial Luttinger-liquid
behavior emerges in a wide range of intermediate densities, evolving into a
Tonks-Girardeau gas at low density and into a classical quasi-ordered state at
high density. The density dependence of the Luttinger exponent is extracted
from the numerical data, providing analytical predictions for observable
quantities, such as the structure factor and the momentum distribution. We
discuss the accessibility of such predictions in current experiments with
ultracold atomic and molecular gases.Comment: 4 pages, 3 EPS figures, Revtex
Tornillos at Vulcano: Clues to the dynamics of the hydrothermal system
The number of tornillo events has recently increased at the Vulcano Island, Italy. While only 15 tornillos were recorded during 2004â2006, 584 events occurred in 2007â2008. They were located just below La Fossa Crater
at depths ranging between 0.1 and 1 km b.s.l. During two intervals in 2007â2008 increases in the number of tornillos took place at the same time as temperature and geochemical anomalies were observed. The spectral
content of the tornillos, generally characterized by oneâtwo dominant spectral peaks near 6 and 10 Hz, varied
over time, with changes also noted in the quality factors. The simplest source mechanism proposed for tornillos is the free eigenvibration of a fluid volume within a crack or a conduit. Based on this model, we
propose a causal relationship between the temperature and geochemical anomalies and the increases in numbers of tornillos. As the amount of hydrothermal fluids increases during the anomalies, the upward flux of
fluids grows. The consequent changes in the pressure, temperature and dynamics of the system of cracks and conduits result in the generation of tornillos. Based on the fluid-filled crack/conduit model, the shallow depths of the sources and the values of the quality factors, the fluid within the resonant crack/conduit was inferred to
be an ashâgas or water dropletâgas mixture. Moreover, the observed variations in the wavefield can be caused by small changes in the location of the source, in the source mechanism, or in the medium in between the
source and the seismic station. Finally, another peculiar feature of tornillos is the amplitude modulation that can be explained as a result of a beating phenomenon.Published377-3933V. ProprietĂ chimico-fisiche dei magmi e dei prodotti vulcaniciJCR Journalreserve
Time interval distributions of atoms in atomic beams
We report on the experimental investigation of two-particle correlations
between neutral atoms in a Hanbury Brown and Twiss experiment. Both an atom
laser beam and a pseudo-thermal atomic beam are extracted from a Bose-Einstein
condensate and the atom flux is measured with a single atom counter. We
determine the conditional and the unconditional detection probabilities for the
atoms in the beam and find good agreement with the theoretical predictions.Comment: 4 pages, 3 figure
Performance of Several LowâCost Accelerometers
Several groups are implementing low-cost host-operated systems of strong-motion accelerographs to support the somewhat divergent needs of seismologists and earthquake engineers. The Advanced National Seismic System Technical Implementation Committee (ANSS TIC, 2002), managed by the U.S. Geological Survey (USGS) in cooperation with other network operators, is exploring the efficacy of such systems if used in ANSS networks. To this end, ANSS convened a working group to explore available Class C strong-motion accelerometers (defined later), and to consider operational and quality control issues, and the means of annotating, storing, and using such data in ANSS networks. The working group members are largely coincident with our author list, and this report informs instrument-performance matters in the working groupâs report to ANSS. Present examples of operational networks of such devices are the Community Seismic Network (CSN; csn.caltech.edu), operated by the California Institute of Technology, and Quake-Catcher Network (QCN; Cochran et al., 2009; qcn.stanford.edu; November 2013), jointly operated by Stanford University and the USGS. Several similar efforts are in development at other institutions. The overarching goals of such efforts are to add spatial density to existing Class-A and Class-B (see next paragraph) networks at low cost, and to include many additional people so they become invested in the issues of earthquakes, their measurement, and the damage they cause
Phase transitions in the boson-fermion resonance model in one dimension
We study 1D fermions with photoassociation or with a narrow Fano-Feshbach
resonance described by the Boson-Fermion resonance model. Using thebosonization
technique, we derive a low-energy Hamiltonian of the system. We show that at
low energy, the order parameters for the Bose Condensation and fermion
superfluidity become identical, while a spin gap and a gap against the
formation of phase slips are formed. As a result of these gaps, charge density
wave correlations decay exponentially in contrast with the phases where only
bosons or only fermions are present. We find a Luther-Emery point where the
phase slips and the spin excitations can be described in terms of
pseudofermions. This allows us to provide closed form expressions of the
density-density correlations and the spectral functions. The spectral functions
of the fermions are gapped, whereas the spectral functions of the bosons remain
gapless. The application of a magnetic field results in a loss of coherence
between the bosons and the fermion and the disappearance of the gap. Changing
the detuning has no effect on the gap until either the fermion or the boson
density is reduced to zero. Finally, we discuss the formation of a Mott
insulating state in a periodic potential. The relevance of our results for
experiments with ultracold atomic gases subject to one-dimensional confinement
is also discussed.Comment: 31 pages, 8 EPS figures, RevTeX 4, long version of cond-mat/050570
Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions
Altered glucocorticoid receptor (GR) signaling is a postulated mechanism for the pathogenesis of major depression. To mimic the human situation of altered GR function claimed for depression, we generated mouse strains that underexpress or overexpress GR, but maintain the regulatory genetic context controlling the GR gene. To achieve this goal, we used the following: (1) GR-heterozygous mutant mice (GR+/-) with a 50% GR gene dose reduction, and (2) mice overexpressing GR by a yeast artificial chromosome resulting in a twofold gene dose elevation. GR+/- mice exhibit normal baseline behaviors but demonstrate increased helplessness after stress exposure, a behavioral correlate of depression in mice. Similar to depressed patients, GR+/- mice have a disinhibited hypothalamic-pituitary-adrenal (HPA) system and a pathological dexamethasone/corticotropin-releasing hormone test. Thus, they represent a murine depression model with good face and construct validity. Overexpression of GR in mice evokes reduced helplessness after stress exposure, and an enhanced HPA system feedback regulation. Therefore, they may represent a model for a stress-resistant strain. These mouse models can now be used to study biological changes underlying the pathogenesis of depressive disorders. As a first potential molecular correlate for such changes, we identified a downregulation of BDNF protein content in the hippocampus of GR+/- mice, which is in agreement with the so-called neurotrophin hypothesis of depression
Maximal length of trapped one-dimensional Bose-Einstein condensates
I discuss a Bogoliubov inequality for obtaining a rigorous bound on the
maximal axial extension of inhomogeneous one-dimensional Bose-Einstein
condensates. An explicit upper limit for the aspect ratio of a strongly
elongated, harmonically trapped Thomas-Fermi condensate is derived.Comment: 6 pages; contributed paper for Quantum Fluids and Solids, Trento
2004, to appear in JLT
Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union
In this study, the potential global loss of species directly associated with land use in the EU and due to trade with other regions is computed over time, in order to reveal differences in impacts between the considered alternatives of plausible bioenergy policies development in the EU.
The spatially explicit study combines a life cycle analysis (LCA) for biodiversity impact assessment with a global high resolution economic land use model. Both impacts of domestic land use and impacts through imports were included for estimating the biodiversity footprint of the member states of the (EU28). The analyzed scenarios assumed similar biomass demand until 2020 but differed thereafter, from keeping the growth of demand for bioenergy constant (CONST), to a strong increase of bioenergy in line with the EU target of decreasing greenhouse gas (GHG) emissions by 80% by 2050 (EMIRED) and with the baseline (BASE) scenario falling between the other two.
As a general trend, the increasing demand for biomass was found to have substantial impact on biodiversity in all scenarios, while the differences between the scenarios were found to be modest. The share caused by imports was 15% of the overall biodiversity impacts detected in this study in the year 2000, and progressively increased to 24% to 26% in 2050, depending on the scenario. The most prominent future change in domestic land use in all scenarios was the expansion of perennial cultivations for energy. In the EMIRED scenario, there is a larger expansion of perennial cultivations and a smaller expansion of cropland in the EU than in the other two scenarios. As the biodiversity damage is smaller for land used for perennial cultivations than for cropland, this development decreases the internal biodiversity damage per unit of land. At the same time, however, the EMIRED scenario also features the largest outsourcing of damage, due to increased import of cropland products from outside the EU for satisfying the EU food demand. These two opposite effects even out each other, resulting in the total biodiversity damage for the EMIRED scenario being only slightly higher than the other two scenarios.
The results of this study indicate that increasing cultivation of perennials for bioenergy and the consequent decrease in the availability of cropland for food production in the EU may lead to outsourcing of agricultural products supply to other regions. This development is associated with a leakage of biodiversity damages to species-rich and vulnerable regions outside the EU.
In the case of a future increase in bioenergy demand, the combination of biomass supply from sustainable forest management in the EU, combined with imported wood pellets and cultivation of perennial energy crops, appears to be less detrimental to biodiversity than expansion of energy crops in the EU
Coherence length of an elongated condensate: a study by matter-wave interferometry
We measure the spatial correlation function of Bose-Einstein condensates in
the cross-over region between phase-coherent and strongly phase-fluctuating
condensates. We observe the continuous path from a gaussian-like shape to an
exponential-like shape characteristic of one-dimensional phase-fluctuations.
The width of the spatial correlation function as a function of the temperature
shows that the condensate coherence length undergoes no sharp transition
between these two regimes.Comment: 8 pages, 6 figure, submitted to EPJ
- âŠ