78 research outputs found
Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy
AbstractBCL-2 family proteins are central regulators of mitochondrial apoptosis and validated anti-cancer targets. Using small cell lung cancer (SCLC) as a model, we demonstrated the presence of differential addiction of cancer cells to anti-apoptotic BCL-2, BCL-XL or MCL-1, which correlated with the respective protein expression ratio. ABT-263 (navitoclax), a BCL-2/BCL-XL inhibitor, prevented BCL-XL from sequestering activator BH3-only molecules (BH3s) and BAX but not BAK. Consequently, ABT-263 failed to kill BCL-XL-addicted cells with low activator BH3s and BCL-XL overabundance conferred resistance to ABT-263. High-throughput screening identified anthracyclines including doxorubicin and CDK9 inhibitors including dinaciclib that synergized with ABT-263 through downregulation of MCL-1. As doxorubicin and dinaciclib also reduced BCL-XL, the combinations of BCL-2 inhibitor ABT-199 (venetoclax) with doxorubicin or dinaciclib provided effective therapeutic strategies for SCLC. Altogether, our study highlights the need for mechanism-guided targeting of anti-apoptotic BCL-2 proteins to effectively activate the mitochondrial cell death programme to kill cancer cells.</jats:p
Experimental results of a YBCO bulk superconducting undulator magnetic optimisation
The magnetic field optimisation of RE-Ba-Cu-O (REBCO, RE = Rare Earth) bulk superconducting undulators is a fundamental step towards their implementation in an accelerator driven photon source, like a synchrotron or a free electron laser. In this article we propose a sorting algorithm to reduce the undulator's phase error based on the reconstruction of the trapped current inside the bulks of a staggered array undulator. The results obtained with a YBCO short prototype field cooled down to 10 K in a 10 T magnetic field are reported. Finally, its performance is critically discussed in light of the 2D magnetic field map of its individual components, obtained at LN2 after the magnetization tests
Phase II Study of a Non-Platinum–Containing Doublet of Paclitaxel and Pemetrexed with Bevacizumab as Initial Therapy for Patients with Advanced Lung Adenocarcinomas
Many patients with lung cancers cannot receive platinum-containing regimens due to co-morbid medical conditions. We designed the PPB regimen of paclitaxel, pemetrexed, and bevacizumab to maintain or improve outcomes while averting the unique toxicities of platinum-based chemotherapies
Algebraic Bethe ansatz method for the exact calculation of energy spectra and form factors: applications to models of Bose-Einstein condensates and metallic nanograins
In this review we demonstrate how the algebraic Bethe ansatz is used for the
calculation of the energy spectra and form factors (operator matrix elements in
the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As
examples we apply the theory to several models of current interest in the study
of Bose-Einstein condensates, which have been successfully created using
ultracold dilute atomic gases. The first model we introduce describes Josephson
tunneling between two coupled Bose-Einstein condensates. It can be used not
only for the study of tunneling between condensates of atomic gases, but for
solid state Josephson junctions and coupled Cooper pair boxes. The theory is
also applicable to models of atomic-molecular Bose-Einstein condensates, with
two examples given and analysed. Additionally, these same two models are
relevant to studies in quantum optics. Finally, we discuss the model of
Bardeen, Cooper and Schrieffer in this framework, which is appropriate for
systems of ultracold fermionic atomic gases, as well as being applicable for
the description of superconducting correlations in metallic grains with
nanoscale dimensions. In applying all of the above models to physical
situations, the need for an exact analysis of small scale systems is
established due to large quantum fluctuations which render mean-field
approaches inaccurate.Comment: 49 pages, 1 figure, invited review for J. Phys. A., published version
available at http://stacks.iop.org/JPhysA/36/R6
Experimental results of a YBCO bulk superconducting undulator magnetic optimization
The magnetic field optimization of RE-Ba-Cu-O (REBCO, RE ¼ rare earth) bulk superconducting
undulators is a fundamental step toward their implementation in an accelerator driven photon source, like a
synchrotron or a free electron laser. In this article, we propose a sorting algorithm to reduce the undulator’s
phase error based on the reconstruction of the trapped current inside the bulks of a staggered array
undulator. The results obtained with a YBCO short prototype field-cooled down to 10 K in a 10 T magnetic
field are reported. Finally, its performance is critically discussed in light of 2D magnetic field maps of its
individual components, obtained at LN2 after the magnetization tests.peer-reviewe
Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X
The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the "antibiotic era". Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases
Protein-altering germline mutations implicate novel genes related to lung cancer development
Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio = 8.82, P = 1.18 × 10−15) and replication (adjusted OR = 2.93, P = 2.22 × 10−3) that is more pronounced in females (adjusted OR = 6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR = 2.61, P = 7.98 × 10−22) and replication datasets (adjusted OR = 1.55, P = 0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk
- …