8 research outputs found

    Pharmacological Evaluation of the SCID T Cell Transfer Model of Colitis: As a Model of Crohn's Disease

    Get PDF
    Animal models are important tools in the development of new drug candidates against the inflammatory bowel diseases (IBDs) Crohn's disease and ulcerative colitis. In order to increase the translational value of these models, it is important to increase knowledge relating to standard drugs. Using the SCID adoptive transfer colitis model, we have evaluated the effect of currently used IBD drugs and IBD drug candidates, that is, anti-TNF-α, TNFR-Fc, anti-IL-12p40, anti-IL-6, CTLA4-Ig, anti-α4β7 integrin, enrofloxacin/metronidazole, and cyclosporine. We found that anti-TNF-α, antibiotics, anti-IL-12p40, anti-α4β7 integrin, CTLA4-Ig, and anti-IL-6 effectively prevented onset of colitis, whereas TNFR-Fc and cyclosporine did not. In intervention studies, antibiotics, anti-IL-12p40, and CTLA4-Ig induced remission, whereas the other compounds did not. The data suggest that the adoptive transfer model and the inflammatory bowel diseases have some main inflammatory pathways in common. The finding that some well-established IBD therapeutics do not have any effect in the model highlights important differences between the experimental model and the human disease

    Immunomodulatory dendritic cells require autologous serum to circumvent nonspecific immunosuppressive activity in vivo

    No full text
    In immunotherapy, dendritic cells (DCs) can be used as powerful antigen-presenting cells to enhance or suppress antigen-specific immunity upon in vivo transfer in mice or humans. However, to generate sufficient numbers of DCs, most protocols include an ex vivo culture step, wherein the cells are exposed to heterologous serum and/or antigenic stimuli. In mouse models of virus infection and virus-induced autoimmunity, we tested how heterologous serum affects the immunomodulatory capacity of immature DCs generated in the presence of IL-10 by comparing fetal bovine serum (FBS)- or normal mouse serum (NMS)-supplemented DC cultures. We show that FBS-exposed DCs induce a systemic immune deviation characterized by reduction of virus-specific T cells, delayed viral clearance, and enhanced systemic production of interleukin 4 (IL-4), IL-5, and IL-10 to FBS-derived antigens, including bovine serum albumin (BSA). By contrast, DCs generated in NMS-supplemented cultures modulated immunity and autoimmunity in an antigen-specific fashion. These cells did not induce systemic IL-4, IL-5, or IL-10 production and inhibited generation of virus-specific T cells or autoimmunity only if pulsed with a viral antigen. These data underscore the importance of using autologous serum-derived immature DCs in preclinical animal studies to accurately assess their immunomodulatory potential in future human therapeutic settings, where application of FBS is not feasible
    corecore