87 research outputs found

    The association between malaria parasitaemia, erythrocyte polymorphisms, malnutrition and anaemia in children less than 10 years in Senegal:a case control study

    Get PDF
    BACKGROUND: Malaria and anaemia (Haemoglobin <11 g/dl) remain frequent in tropical regions and are closely associated. Although anaemia aetiologies are known to be multi-factorial, most studies in malaria endemic areas have been confined to analysis of possible associations between anaemia and individual factors such as malaria. A case control study involving children aged from 1 to 10 years was conducted to assess some assumed contributors to anaemia in the area of Bonconto Health post in Senegal. METHODS: Study participants were randomly selected from a list of children who participated in a survey in December 2010. Children aged from 1 to 10 years with haemoglobin level below 11 g/dl represented cases (anaemic children). Control participants were eligible if of same age group and their haemoglobin level was >= 11 g/dl. For each participant, a physical examination was done and anthropometric data collected prior to a biological assessment which included: malaria parasitaemia infection, intestinal worm carriage, G6PD deficiency, sickle cell disorders, and alpha-talassaemia. RESULTS: Three hundred and fifty two children < 10 years of age were enrolled (176 case and 176 controls). In a logistic regression analysis, anaemia was significantly associated with malaria parasitaemia (aOR=5.23, 95%CI[1.1-28.48]), sickle cell disorders (aOR=2.89, 95%CI[1,32-6.34]), alpha-thalassemia (aOR=1.82, 95%CI[1.2-3.35]), stunting (aOR=3.37, 95%CI[1.93-5.88], age ranged from 2 to 4 years (aOR=0.13, 95%CI[0.05-0.31]) and age > 5 years (aOR=0.03, 95%CI[0.01-0.08]). Stratified by age group, anaemia was significantly associated with stunting in children less than 5 years (aOR=3.1 95%CI[1.4 – 6.8]), with, sickle cell disorders (aOR=3.5 95%CI [1.4 – 9.0]), alpha-thalassemia (or=2.4 95%CI[1.1–5.3]) and stunting (aOR=3.6 95%CI [1.6–8.2]) for children above 5 years. No association was found between G6PD deficiency, intestinal worm carriage and children’s gender. CONCLUSION: Malaria parasitaemia, stunting and haemoglobin genetic disorders represented the major causes of anaemia among study participants. Anaemia control in this area could be achieved by developing integrated interventions targeting both malaria and malnutrition

    Haplotypes of the Endothelial Protein C Receptor (EPCR) Gene are Not Associated with Severe Malaria in Tanzania.

    Get PDF
    Endothelial protein C receptor (EPCR) was recently identified as a key receptor for Plasmodium falciparum erythrocyte membrane protein 1 mediating sequestration of P. falciparum-infected erythrocytes in patients suffering from severe malaria. Soluble EPCR (sEPCR) inhibits binding of P. falciparum to EPCR in vitro and increased levels of sEPCR have been associated with the H3 haplotype of the EPCR encoding PROCR gene. It has been hypothesized that elevated sEPCR levels, possibly linked to the PROCR H3 genetic variant, may confer protection against severe forms of malaria. This study determined the frequencies of PROCR haplotypes H1-4 and plasma levels of sEPCR in a Tanzanian study population to investigate a possible association with severe malaria. Study participants were children under 5 years of age admitted at the Korogwe District Hospital (N = 143), and diagnosed as having severe malaria (N = 52; including cerebral malaria N = 17), uncomplicated malaria (N = 24), or an infection other than malaria (N = 67). In addition, blood samples from 71 children living in nearby villages were included. The SNPs defining the haplotypes of PROCR gene were determined by post-PCR ligation detection reaction-fluorescent microsphere assay. Individuals carrying at least one H3 allele had significantly higher levels of sEPCR than individuals with no H3 alleles (P < 0.001). No difference in the frequency of H3 was found between the non-malaria patients, malaria patients or the village population (P > 0.1). Plasma levels of sEPCR differed between these three groups, with higher sEPCR levels in the village population compared to the hospitalized patients (P < 0.001) and higher levels in malaria patients compared to non-malaria patients (P = 0.001). However, no differences were found in the distribution of H3 (P = 0.2) or levels of sEPCR (P = 0.8) between patients diagnosed with severe and uncomplicated malaria. Frequencies of SNPs determining PROCR haplotypes were in concordance with other African studies. The PROCR H3 allele was associated with higher levels of sEPCR, confirming earlier findings, however, in this Tanzanian population; neither PROCR haplotype nor level of sEPCR was associated with severe malaria, however, larger studies are needed to confirm these findings

    High DDT resistance without apparent association to kdr and Glutathione-Stransferase (GST) gene mutations in Aedes aegypti population at hotel compounds in Zanzibar

    Get PDF
    Global efforts to control Aedes mosquito-transmitted pathogens still rely heavily on insecticides. However, available information on vector resistance is mainly restricted to mosquito populations located in residential and public areas, whereas commercial settings, such as hotels are overlooked. This may obscure the real magnitude of the insecticide resistance problem and lead to ineffective vector control and resistance management. We investigated the profile of insecticide susceptibility of Aedes aegypti mosquitoes occurring at selected hotel compounds on Zanzibar Island. At least 100 adults Ae. aegypti females from larvae collected at four hotel compounds were exposed to papers impregnated with discriminant concentrations of DDT (4%), permethrin (0.75%), 0.05 deltamethrin (0.05%), propoxur (0.1%) and bendiocarb (0.1%) to determine their susceptibility profile. Allele-specific qPCR and sequencing analysis were applied to determine the possible association between observed resistance and presence of single nucleotide polymorphisms (SNPs) in the voltage-gated sodium channel gene (VGSC) linked to DDT/pyrethroid cross-resistance. Additionally, we explored the possible involvement of Glutathione-S-Transferase gene (GSTe2) mutations for the observed resistance profile. In vivo resistance bioassay indicated that Ae. aegypti at studied sites were highly resistant to DDT, mortality rate ranged from 26.3% to 55.3% and, moderately resistant to deltamethrin with a mortality rate between 79% to and 100%. However, genotyping of kdr mutations affecting the voltage-gated sodium channel only showed a low frequency of the V1016G mutation (n = 5; 0.97%). Moreover, for GSTe2, seven non-synonymous SNPs were detected (L111S, C115F, P117S, E132A, I150V, E178A and A198E) across two distinct haplotypes, but none of these were significantly associated with the observed resistance to DDT. Our findings suggest that cross-resistance to DDT/deltamethrin at hotel compounds in Zanzibar is not primarily mediated by mutations in VGSC. Moreover, the role of identified GSTe2 mutations in the resistance against DDT remains inconclusive. We encourage further studies to investigate the role of other potential insecticide resistance markers.This study forms a part of the EnSuZa project funded by the Ministry of Foreign Affairs of Denmark.https://journals.plos.org/plosntdsdm2022Zoology and Entomolog

    Common virulence gene expression in adult first-time infected malaria patients and severe cases

    Get PDF
    Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds

    Fetal growth and birth weight are independently reduced by malaria infection and curable sexually transmitted and reproductive tract infections in Kenya, Tanzania, and Malawi: A pregnancy cohort study

    Get PDF
    Objective Malaria and sexually transmitted and reproductive tract infections (STIs/RTIs) are highly prevalent in sub-Saharan Africa and associated with poor pregnancy outcomes. We investigated the individual and combined effects of malaria and curable STIs/RTIs on fetal growth in Kenya, Tanzania, and Malawi. Methods This study was nested within a randomized trial comparing monthly intermittent preventive treatment for malaria in pregnancy with sulfadoxine-pyrimethamine versus dihydroartemisinin-piperaquine, alone or combined with azithromycin. Fetal weight gain was assessed by serial prenatal ultrasound. Malaria was assessed monthly, and Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis, Chlamydia trachomatis and bacterial vaginosis at enrolment and in the third trimester. The effect of malaria and STIs/RTIs on fetal weight/birthweight Z-scores was evaluated using mixed-effects linear regression. Results 1,435 pregnant women had fetal/birth weight assessed 3,950 times. Compared to women without malaria or STIs/RTIs (n=399), malaria-only (n=267), STIs/RTIs-only (n=410) or both (n=353) were associated with reduced fetal growth (adjusted mean difference in fetal/birth weight Z-score [95% CI]: malaria=-0.18 [-0.31,-0.04], p=0.01]; STIs/RTIs=-0.14 [-0.26,-0.03], p=0.01]; both=-0.20 [-0.33,-0.07], p=0.003). Paucigravidae experienced the greatest impact. Conclusion Malaria and STIs/RTIs are associated with poor fetal growth especially among paucigravidae women with dual infections. Integrated antenatal interventions are needed to reduce the burden of both malaria and STIs/RTIs
    corecore