303 research outputs found

    Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms

    Get PDF
    The voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is the major transport channel mediating the transport of metabolites, including ATP, across the mitochondrial outer membrane. Biochemical data demonstrate the binding of the cytosolic protein hexokinase-I to VDAC, facilitating the direct access of hexokinase-I to the transported ATP. In human cells, three hVDAC isoforms have been identified. However, little is known on the distribution of these isoforms within the outer membrane of mitochondria and to what extent they colocalize with hexokinase-I. In this study we show that whereas hVDAC1 and hVDAC2 are localized predominantly within the same distinct domains in the outer membrane, hVDAC3 is mostly uniformly distributed over the surface of the mitochondrion. We used two-color stimulated emission depletion (STED) microscopy enabling a lateral resolution of ~40 nm to determine the detailed sub-mitochondrial distribution of the three hVDAC isoforms and hexokinase-I. Individual hVDAC and hexokinase-I clusters could thus be resolved which were concealed in the confocal images. Quantitative colocalization analysis of two-color STED images demonstrates that within the attained resolution, hexokinase-I and hVDAC3 exhibit a higher degree of colocalization than hexokinase-I with either hVDAC1 or hVDAC2. Furthermore, a substantial fraction of the mitochondria-bound hexokinase-I pool does not colocalize with any of the three hVDAC isoforms, suggesting a more complex interplay of these proteins than previously anticipated. This study demonstrates that two-color STED microscopy in conjunction with quantitative colocalization analysis is a powerful tool to study the complex distribution of membrane proteins in organelles such as mitochondria

    Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters

    Get PDF
    We demonstrate nanoscale resolution in far-field fluorescence microscopy using reversible photoswitching and localization of individual fluorophores at comparatively fast recording speeds and from the interior of intact cells. These advancements have become possible by asynchronously recording the photon bursts of individual molecular switching cycles. We present images from the microtubular network of an intact mammalian cell with a resolution of 40 nm

    Switchable Fluorescent and Solvatochromic Molecular Probes Based on 4-Amino-N-methylphthalimide and a Photochromic Diarylethene

    Get PDF
    New fluorescent photochromic compounds (1-H and 1-Boc)have been synthesized and characterized in different solvents.The fluorescence emission can be switched “on” and“off” with visible light and UV, respectively, by means of thephotochromic reaction. The emission wavelength and efficiencystrongly depend on the polarity of the solvent. Thecompounds show a positive solvatochromic effect in theemission maxima, and their fluorescence quantum yield decreasesas the solvent’s polarity increases (from cyclohexaneto dioxane). In solvents more polar than dioxane the emissionis too weak and therefore undetectable, and thus 1-H and 1-Boc behave as “normal” photochromic compounds. The photochromic reaction is also sensitive to the environment. A decreaseof more than an order of magnitude was found for thequantum yield of the colouring reaction (ΊOFCF) for 1-H inethanol compared with cyclohexane, and an about threefolddecrease in ΊOFCF was observed for the compound 1-Bocin polar solvents (compared with apolar solvents). For bothcompounds the ring-opening reaction was found not to dependenton the solvent. The novel fluorescent molecularswitches 1-H and 1-Boc are able to probe the polarity of theirmicroenvironment.Fil: Yan, Sergey F.. Max Planck Institute for Biophysical Chemistry; AlemaniaFil: Belov, Vladimir N.. Max Planck Institute for Biophysical Chemistry; AlemaniaFil: Bossi, Mariano Luis. Max Planck Institute for Biophysical Chemistry; Alemania. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica, FĂ­sica de los Materiales, Medioambiente y EnergĂ­a; ArgentinaFil: Hell, Stefan W.. Max Planck Institute for Biophysical Chemistry; Alemani

    Dynamic Responses of Female Volunteers in Rear Impact Sled Tests at Two Head Restraint Distances

    Get PDF
    The objective of this study was to assess the biomechanical and kinematic responses of female volunteers with two different head restraint (HR) configurations when exposed to a low-speed rear loading environment. A series of rear impact sled tests comprising eight belted, near 50th percentile female volunteers, seated on a simplified laboratory seat, was performed with a mean sled acceleration of 2.1 g and a velocity change of 6.8 km/h. Each volunteer underwent two tests; the first test configuration, HR10, was performed at the initial HR distance ∌10 cm and the second test configuration, HR15, was performed at ∌15 cm. Time histories, peak values and their timing were derived from accelerometer data and video analysis, and response corridors were also generated. The results were separated into three different categories, HR10C (N = 8), HR15C (N = 6), and HR15NC (N= 2), based on: (1) the targeted initial HR distance [10 cm or 15 cm] and (2) whether the volunteers’ head had made contact with the HR [Contact (C) or No Contact (NC)] during the test event. The results in the three categories deviated significantly. The greatest differences were found for the average peak head angular displacements, ranging from 10\ub0 to 64\ub0. Furthermore, the average neck injury criteria (NIC) value was 22% lower in HR10C (3.9 m2/s2), and 49% greater in HR15NC (7.4 m2/s2) in comparison to HR15C (5.0 m2/s2). This study supplies new data suitable for validation of mechanical or mathematical models of a 50th percentile female. A model of a 50th percentile female remains to be developed and is urgently required to complement the average male models to enhance equality in safety assessments. Hence, it is important that future protection systems are developed and evaluated with female properties taken into consideration too. It is likely that the HR15 test configuration is close to the limit for avoiding HR contact for this specific seat setup. Using both datasets (HR15C and HR15NC), each with its corresponding HR contact condition, will be possible in future dummy or model evaluation
    • 

    corecore