281 research outputs found

    Extension of the spin-1/2 frustrated square lattice model: the case of layered vanadium phosphates

    Full text link
    We study the influence of the spin lattice distortion on the properties of frustrated magnetic systems and consider the applicability of the spin-1/2 frustrated square lattice model to materials lacking tetragonal symmetry. We focus on the case of layered vanadium phosphates AA'VO(PO4)2 (AA' = Pb2, SrZn, BaZn, and BaCd). To provide a proper microscopic description of these compounds, we use extensive band structure calculations for real materials and model structures and supplement this analysis with simulations of thermodynamic properties, thus facilitating a direct comparison with the experimental data. Due to the reduced symmetry, the realistic spin model of layered vanadium phosphates AA'VO(PO4)2 includes four inequivalent exchange couplings: J1 and J1' between nearest-neighbors and J2 and J2' between next-nearest-neighbors. The estimates of individual exchange couplings suggest different regimes, from J1'/J1 and J2'/J2 close to 1 in BaCdVO(PO4)2, a nearly regular frustrated square lattice, to J1'/J1 ~ 0.7 and J2'/J2 ~ 0.4 in SrZnVO(PO4)2, a frustrated square lattice with sizable distortion. The underlying structural differences are analyzed, and the key factors causing the distortion of the spin lattice in layered vanadium compounds are discussed. We propose possible routes for finding new frustrated square lattice materials among complex vanadium oxides. Full diagonalization simulations of thermodynamic properties indicate the similarity of the extended model to the regular one with averaged couplings. In case of moderate frustration and moderate distortion, valid for all the AA'VO(PO4)2 compounds reported so far, the distorted spin lattice can be considered as a regular square lattice with the couplings (J1+J1')/2 between nearest-neighbors and (J2+J2')/2 between next-nearest-neighbors.Comment: 14 pages, 9 figures, 4 table

    RVSDG: An Intermediate Representation for Optimizing Compilers

    Full text link
    Intermediate Representations (IRs) are central to optimizing compilers as the way the program is represented may enhance or limit analyses and transformations. Suitable IRs focus on exposing the most relevant information and establish invariants that different compiler passes can rely on. While control-flow centric IRs appear to be a natural fit for imperative programming languages, analyses required by compilers have increasingly shifted to understand data dependencies and work at multiple abstraction layers at the same time. This is partially evidenced in recent developments such as the MLIR proposed by Google. However, rigorous use of data flow centric IRs in general purpose compilers has not been evaluated for feasibility and usability as previous works provide no practical implementations. We present the Regionalized Value State Dependence Graph (RVSDG) IR for optimizing compilers. The RVSDG is a data flow centric IR where nodes represent computations, edges represent computational dependencies, and regions capture the hierarchical structure of programs. It represents programs in demand-dependence form, implicitly supports structured control flow, and models entire programs within a single IR. We provide a complete specification of the RVSDG, construction and destruction methods, as well as exemplify its utility by presenting Dead Node and Common Node Elimination optimizations. We implemented a prototype compiler and evaluate it in terms of performance, code size, compilation time, and representational overhead. Our results indicate that the RVSDG can serve as a competitive IR in optimizing compilers while reducing complexity

    Learning Monocular 3D Human Pose Estimation from Multi-view Images

    Full text link
    Accurate 3D human pose estimation from single images is possible with sophisticated deep-net architectures that have been trained on very large datasets. However, this still leaves open the problem of capturing motions for which no such database exists. Manual annotation is tedious, slow, and error-prone. In this paper, we propose to replace most of the annotations by the use of multiple views, at training time only. Specifically, we train the system to predict the same pose in all views. Such a consistency constraint is necessary but not sufficient to predict accurate poses. We therefore complement it with a supervised loss aiming to predict the correct pose in a small set of labeled images, and with a regularization term that penalizes drift from initial predictions. Furthermore, we propose a method to estimate camera pose jointly with human pose, which lets us utilize multi-view footage where calibration is difficult, e.g., for pan-tilt or moving handheld cameras. We demonstrate the effectiveness of our approach on established benchmarks, as well as on a new Ski dataset with rotating cameras and expert ski motion, for which annotations are truly hard to obtain.Comment: CVPR 2018, Ski-Pose PTZ-Camera Dataset availabl

    A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder

    Get PDF
    Several bladder cancer culture systems have been developed in recent years. However, reports about successful primary cultures of superficial urothelial carcinomas (UC) are sparse. Based on the specific growth requirements of UC described previously, we developed a new and reliable culture system for superficial low-grade UC. Between November 2002 and April 2006, 64 primary cultures of bladder cancer specimens were performed. After incubating the specimens overnight in 0.1% ethylenediaminetetraacetic acid solution, tumour cells could easily be separated from the submucosal tissue. Subsequently, cells were seeded in a low-calcium culture medium supplemented with 1% serum, growth factors, non-essential amino acids and glycine. The malignant origin of the cultured cells was demonstrated by spectral karyotyping. Overall culture success rate leading to a homogenous tumour cell population without fibroblast contamination was 63%. Culture success could be remarkably enhanced by the addition of glycine to the culture medium. Interestingly, 86.4% of pTa tumours were cultured successfully compared to only 50% of the pT1 and 38% of advanced stage tumours, respectively. G1 and G2 tumours grew significantly better than G3 tumours (86, 73 and 41%, respectively). Up to three passages of low-grade UC primary cultures were possible. We describe a new and reliable culture system, which is highly successful for primary culture and passage of low-grade UC of the bladder. Therefore, this culture system can widely be used for functional experiments on early stage bladder cance

    Agl24 is an ancient archaeal homolog of the eukaryotic N-glycan chitobiose synthesis enzymes

    Get PDF
    Protein N-glycosylation is a post-translational modification found in organisms of all domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in Eukaryotes, although the enzyme catalyzing this reaction remains unknown. Here, we report the identification of a thermostable archaeal β-1,4-N-acetylglucosaminyltransferase, named archaeal glycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core. Biochemical characterization confirmed its function as an inverting β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase. Substitution of a conserved histidine residue, found also in the eukaryotic and bacterial homologs, demonstrated its functional importance for Agl24. Furthermore, bioinformatics and structural modeling revealed similarities of Agl24 to the eukaryotic Alg14/13 and a distant relation to the bacterial MurG, which are catalyzing the same or a similar reaction, respectively. Phylogenetic analysis of Alg14/13 homologs indicates that they are ancient in Eukaryotes, either as a lateral transfer or inherited through eukaryogenesis.</p

    Building CPU stubs to optimize CPU bound systems: An application of dynamic performance stubs.

    Get PDF
    Dynamic performance stubs provide a framework for the simulation of the performance behavior of software modules and functions. Hence, they can be used as an exten- sion to software performance engineering methodologies. The methodology of dynamic performance stubs can be used for a gain oriented performance improvement. It is also possible to identify “hidden” bottlenecks and to prioritize optimization possibilities. Nowadays, the processing power of CPUs is mainly increased by adding more cores to the architecture. To have benefits from this, new software is mostly designed for parallel processing, especially, in large software projects. As software performance optimizations can be difficult in these environments, new methodologies have to be defined. This paper evaluates a possibility to simulate the functional behavior of software algorithms by the use of the simulated software functionality. These can be used by the dynamic performance stub framework, e.g., to build a CPU stub, to replace the algorithm. Thus, it describes a methodology as well as an implementation and evaluates both in an industrial case study. Moreover, it presents an extension to the CPU stubs by applying these stubs to simulate multi-threaded applications. The extension is evaluated by a case study as well. We show show that the functionality of software algorithms can be replaced by software simulation functions. This stubbing approach can be used to create dynamic performance stubs, such as CPU stubs. Additionally, we show that the concept of CPU stubs can be applied to multi-threaded applications

    Inversion‐recovery MR elastography of the human brain for improved stiffness quantification near fluid–solid boundaries

    Get PDF
    Purpose: In vivo MR elastography (MRE) holds promise as a neuroimaging marker. In cerebral MRE, shear waves are introduced into the brain, which also stimulate vibrations in adjacent CSF, resulting in blurring and biased stiffness values near brain surfaces. We here propose inversion-recovery MRE (IR-MRE) to suppress CSF signal and improve stiffness quantification in brain surface areas. Methods: Inversion-recovery MRE was demonstrated in agar-based phantoms with solid-fluid interfaces and 11 healthy volunteers using 31.25-Hz harmonic vibrations. It was performed by standard single-shot, spin-echo EPI MRE following 2800-ms IR preparation. Wave fields were acquired in 10 axial slices and analyzed for shear wave speed (SWS) as a surrogate marker of tissue stiffness by wavenumber-based multicomponent inversion. Results: Phantom SWS values near fluid interfaces were 7.5 ± 3.0% higher in IR-MRE than MRE (P = .01). In the brain, IR-MRE SNR was 17% lower than in MRE, without influencing parenchymal SWS (MRE: 1.38 ± 0.02 m/s; IR-MRE: 1.39 ± 0.03 m/s; P = .18). The IR-MRE tissue-CSF interfaces appeared sharper, showing 10% higher SWS near brain surfaces (MRE: 1.01 ± 0.03 m/s; IR-MRE: 1.11 ± 0.01 m/s; P < .001) and 39% smaller ventricle sizes than MRE (P < .001). Conclusions: Our results show that brain MRE is affected by fluid oscillations that can be suppressed by IR-MRE, which improves the depiction of anatomy in stiffness maps and the quantification of stiffness values in brain surface areas. Moreover, we measured similar stiffness values in brain parenchyma with and without fluid suppression, which indicates that shear wavelengths in solid and fluid compartments are identical, consistent with the theory of biphasic poroelastic media

    Reduction of breathing artifacts in multifrequency magnetic resonance elastography of the abdomen

    Get PDF
    Purpose: With abdominal magnetic resonance elastography (MRE) often suffering from breathing artifacts, it is recommended to perform MRE during breath-hold. However, breath-hold acquisition prohibits extended multifrequency MRE examinations and yields inconsistent results when patients cannot hold their breath. The purpose of this work was to analyze free-breathing strategies in multifrequency MRE of abdominal organs. Methods: Abdominal MRE with 30, 40, 50, and 60 Hz vibration frequencies and single-shot, multislice, full wave-field acquisition was performed four times in 11 healthy volunteers: once with multiple breath-holds and three times during free breathing with ungated, gated, and navigated slice adjustment. Shear wave speed maps were generated by tomoelastography inversion. Image registration was applied for correction of intrascan misregistration of image slices. Sharpness of features was quantified by the variance of the Laplacian. Results: Total scan times ranged from 120 seconds for ungated free-breathing MRE to 376 seconds for breath-hold examinations. As expected, free-breathing MRE resulted in larger organ displacements (liver, 4.7 ± 1.5 mm; kidneys, 2.4 ± 2.2 mm; spleen, 3.1 ± 2.4 mm; pancreas, 3.4 ± 1.4 mm) than breath-hold MRE (liver, 0.7 ± 0.2 mm; kidneys, 0.4 ± 0.2 mm; spleen, 0.5 ± 0.2 mm; pancreas, 0.7 ± 0.5 mm). Nonetheless, breathing-related displacement did not affect mean shear wave speed, which was consistent across all protocols (liver, 1.43 ± 0.07 m/s; kidneys, 2.35 ± 0.21 m/s; spleen, 2.02 ± 0.15 m/s; pancreas, 1.39 ± 0.15 m/s). Image registration before inversion improved the quality of free-breathing examinations, yielding no differences in image sharpness to uncorrected breath-hold MRE in most organs (P > .05). Conclusion: Overall, multifrequency MRE is robust to breathing when considering whole-organ values. Respiration-related blurring can readily be corrected using image registration. Consequently, ungated free-breathing MRE combined with image registration is recommended for multifrequency MRE of abdominal organs

    Cholesterol promotes clustering of PI(4,5)P2 driving unconventional secretion of FGF2

    Get PDF
    FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2
    corecore