9 research outputs found

    Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere

    Get PDF
    Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant–microbe-microbe interactions on the leaf surface

    The ecological and evolutionary significance of disease resistance in metal hyperaccumulating plants

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The current status of the elemental defense hypothesis in relation to pathogens

    Get PDF
    Metal hyperaccumulating plants are able to accumulate exceptionally high concentrations of metals, such as zinc, nickel, or cadmium, in their aerial tissues. These metals reach concentrations that would be toxic to most other plant species. This trait has evolved multiple times independently in the plant kingdom. Recent studies have provided new insight into the ecological and evolutionary significance of this trait, by showing that some metal hyperaccumulating plants can use high concentrations of accumulated metals to defend themselves against attack by pathogenic microorganisms and herbivores. Here, we review the evidence that metal hyperaccumulation acts as a defensive trait in plants, with particular emphasis on plant-pathogen interactions. We discuss the mechanisms by which defense against pathogens might have driven the evolution of metal hyperaccumulation, including the interaction of this trait with other forms of defense. In particular, we consider how physiological adaptations and fitness costs associated with metal hyperaccumulation could have resulted in trade-offs between metal hyperaccumulation and other defenses. Drawing on current understanding of the population ecology of metal hyperaccumulator plants, we consider the conditions that might have been necessary for metal hyperaccumulation to be selected as a defensive trait, and discuss the likelihood that these were fulfilled. Based on these conditions, we propose a possible scenario for the evolution of metal hyperaccumulation, in which selective pressure for resistance to pathogens or herbivores, combined with gene flow from non-metallicolous populations, increases the likelihood that the metal hyperaccumulating trait becomes established in plant populations

    Data from: Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens

    No full text
    Metal hyperaccumulating plants, which are hypothesised to use metals for defence against pests and pathogens, provide a unique context in which to study plant–pathogen co-evolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term co-existence with zinc hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves
    corecore