22 research outputs found

    Better off:when should pervasive displays be powered down?

    Get PDF
    Digital displays are a ubiquitous feature of our public spaces - both ever present, and "always on". In this paper we use a combination of literature survey, experimental work, and stakeholder interviews to consider if maximising the amount of time such displays are powered on is truly advantageous. We challenge existing practice by considering arguments from the perspectives of multiple stakeholders (viewers, passers-by, content creators and signage owners), and identify multiple facets for consideration including levels of attention, cognitive load, impact on social interactions, energy and financial costs, advertising revenue, perceptions of failure and the pressures of creating valuable content

    Addressing the challenges of making data, products, and services accessible: an EPOS perspective

    Get PDF
    Novel measurement technologies, additional sensors and increasing data processing capacities offer new opportunities to answer some of the currently most pressing societal and environmental questions. They also contribute to the fact that the available data volume will continue to increase. At the same time, the requirements for those providing such data rise and the needs of users to access it. The EPOS Delivery Framework aims to support this endeavour in the solid Earth domain by providing access to data, products, and services supporting multidisciplinary analyses for a wide range of users. Based on this example, we look at the most pressing issues from when data, products, and services are made accessible, to access principles, ethical issues related to its collection and use as well as with respect to their promotion. Among many peculiarities, we shed light on a common component that affects all fields equally: change. Not only will the amount and type of data, products, and services change, but so will the societal expectations and providers capabilities

    Enabling FAIR research in Earth Science through research objects

    Get PDF
    Data-intensive science communities are progressively adopting FAIR practices that enhance the visibility of scientific breakthroughs and enable reuse. At the core of this movement, research objects contain and describe scientific information and resources in a way compliant with the FAIR principles and sustain the development of key infrastructure and tools. This paper provides an account of the challenges, experiences and solutions involved in the adoption of FAIR around research objects over several Earth Science disciplines. During this journey, our work has been comprehensive, with outcomes including: an extended research object model adapted to the needs of earth scientists; the provisioning of digital object identifiers (DOI) to enable persistent identification and to give due credit to authors; the generation of content-based, semantically rich, research object metadata through natural language processing, enhancing visibility and reuse through recommendation systems and third-party search engines; and various types of checklists that provide a compact representation of research object quality as a key enabler of scientific reuse. All these results have been integrated in ROHub, a platform that provides research object management functionality to a wealth of applications and interfaces across different scientific communities. To monitor and quantify the community uptake of research objects, we have defined indicators and obtained measures via ROHub that are also discussed herein.Published550-5645IT. Osservazioni satellitariJCR Journa

    The Global Impact of Science Gateways, Virtual Research Environments and Virtual Laboratories

    Get PDF
    Science gateways, virtual laboratories and virtual research environments are all terms used to refer to community-developed digital environments that are designed to meet a set of needs for a research community. Specifically, they refer to integrated access to research community resources including software, data, collaboration tools, workflows, instrumentation and high-performance computing, usually via Web and mobile applications. Science gateways, virtual laboratories and virtual research environments are enabling significant contributions to many research domains, facilitating more efficient, open, reproducible research in bold new ways. This paper explores the global impact achieved by the sum effects of these programs in increasing research impact, demonstrates their value in the broader digital landscape and discusses future opportunities. This is evidenced through examination of national and international programs in this field

    Ocean FAIR Data Services

    Get PDF
    Well-founded data management systems are of vital importance for ocean observing systems as they ensure that essential data are not only collected but also retained and made accessible for analysis and application by current and future users. Effective data management requires collaboration across activities including observations, metadata and data assembly, quality assurance and control (QA/QC), and data publication that enables local and interoperable discovery and access and secures archiving that guarantees long-term preservation. To achieve this, data should be findable, accessible, interoperable, and reusable (FAIR). Here, we outline how these principles apply to ocean data and illustrate them with a few examples. In recent decades, ocean data managers, in close collaboration with international organizations, have played an active role in the improvement of environmental data standardization, accessibility, and interoperability through different projects, enhancing access to observation data at all stages of the data life cycle and fostering the development of integrated services targeted to research, regulatory, and operational users. As ocean observing systems evolve and an increasing number of autonomous platforms and sensors are deployed, the volume and variety of data increase dramatically. For instance, there are more than 70 data catalogs that contain metadata records for the polar oceans, a situation that makes comprehensive data discovery beyond the capacity of most researchers. To better serve research, operational, and commercial users, more efficient turnaround of quality data in known formats and made available through Web services is necessary. In particular, automation of data workflows will be critical to reduce friction throughout the data value chain. Adhering to the FAIR principles with free, timely, and unrestricted access to ocean observation data is beneficial for the originators, has obvious benefits for users, and is an essential foundation for the development of new services made possible with big data technologies

    Developing a common global framework for marine data management

    No full text
    The paradigm shift in marine research moving from the traditional discipline based methodology to a multidisciplinary, ecosystem level approach is being driven by changes in both the policies for the management and exploitation of the ocean, and the scientific method itself. The availability of large volumes of good quality data is fundamental to this increasingly holistic approach to ocean research but there are significant barriers to its re-use. The Ocean Data Interoperability Platform (ODIP) project has been funded in parallel by the European Commission, National Science Foundation in the USA and the Australian Government to promote the development of a common framework for marine data management that leverages the existing marine e-infrastructures which have been created in response to the need for greater sharing of marine data at a regional level

    EVER-EST: A Virtual Research Environment for the Earth Sciences

    No full text
    There is an increasing requirement for researchers to work collaboratively using common resources whilst being geographically dispersed. By creating a virtual research environment (VRE) using a service oriented architecture (SOA) tailored to the needs of Earth Science (ES) communities, the EVEREST project will provide a range of both generic and domain specific data management services to support a dynamic approach to collaborative research. EVER-EST will provide the means to overcome existing barriers to sharing of Earth Science data and information allowing research teams to discover, access, share and process heterogeneous data, algorithms, results and experiences within and across their communities, including those domains beyond Earth Science. Researchers will be able to seamlessly manage both the data involved in their computationally intensive disciplines and the scientific methods applied in their observations and modelling, which lead to the specific results that need to be attributable, validated and shared both within the community and more widely e.g. in the form of scholarly communications.<br><br>Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although several e-laboratories are incorporating the research object concept in their infrastructure, the EVER-EST VRE will be the first infrastructure to leverage the concept of Research Objects and their application in observational rather than experimental disciplines. <br><br>Development of the EVEREST VRE will leverage the results of several previous projects which have produced state-of-the-art technologies for scientific data management and curation as well those which have developed models, techniques and tools for the preservation of scientific methods and their implementation in computational forms such as scientific workflows. The EVER-EST data processing infrastructure will be based on a Cloud Computing approach, in which new applications can be integrated using “virtual machines” that have their own specifications (disk size, processor speed, operating system etc.) and run on shared private (physical deployment over local hardware) or commercial Cloud infrastructures.<br><br>The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains including: ocean monitoring, natural hazards, land monitoring and risk management (volcanoes and seismicity). Each VRC will use the virtual research environment according to its own specific requirements for data, software, best practice and community engagement. This user-centric approach will allow an assessment to be made of the capability for the proposed solution to satisfy the heterogeneous needs of a variety of Earth Science communities for more effective collaboration, and higher efficiency and creativity in research. <br>EVER-EST is funded by the European Commission’s H2020 for three years starting in October 2015. The project is led by the European Space Agency (ESA), and involves some of the major European Earth Science data providers/users including NERC, DLR, INGV, CNR and SatCEN
    corecore