567 research outputs found

    Mercury's Weather-Beaten Surface: An Examination of the Relevant Processes Through Comparisons and Contrasts with the Moon and Asteroids

    Get PDF
    We examine global color properties of Mercury and their correlations to the predicted trends due to particle bombardment and thermal processing. Color ratio and spectral slope analyzes are interpreted relative to lunar and asteroid studies

    Laser cladding of Ni based powder on a Cu-Ni-Al glassmold: Influence of the process parameters on bonding quality and coating geometry

    Get PDF
    International audienceLaser cladding of a Ni based powder on cupro-nickel-aluminum (Cu-Ni-Al) substrate was performed with a 4 kW continuous laser. The Cu-Ni-Al alloy is used for its thermal properties in glass mold industry. The role of the Ni based alloy clad is to protect the mold without affecting its thermal properties by limiting the heat-affected zone. The objective of this research is to produce a well bonded Ni based melted powder without pores or cracks and with a very small dilution zone on a non-planar surface (curved section). The impact of the process parameters such as laser power, scanning speed and powder feeding rate on the coating geometry was investigated with an experimental design technique analysis using the ANOVA (Analysis of variance) method. It was used to determine and represent the influence of each process parameter on the coating geometry (width, height) and the bonding quality. This ANOVA analysis led to a parameter combination to optimize the bonding quality between the Ni coating and the Cu-Ni-Al substrate taking into account the industrial geometrical constraints. More, an analytical calculation allowed to estimate the power necessary for bonding as a function of laser scanning speed and powder feeding rate

    Design and Manufacture of a Highly Reliable, Miniaturized and Low Mass Shutter Mechanism

    Get PDF
    This paper describes the development, manufacturing and testing of a lightweight shutter mechanism made of titanium for the MERTIS Instrument. MERTIS is a thermal infrared imaging spectrometer onboard ESA's future BepiColombo mission to Mercury. The mechanism is built as a parallelogram arrangement of flexible hinges, actuated by a voice coil. In a first test run, it was shown that the selected EDM processing led to the generation of titanium oxides and an oxygen-enriched surface layer on the substrate (so called alpha-case layer). In the revised version of the shutter, it was possible to manufacture the complex geometry by micro-milling and an adjacent pickling procedure. The adequacy of this approach was verified by lifetime and vibration testing

    MERTIS on BepiColombo Cruise Operations: Flybys to the Moon and Venus

    Get PDF
    BepiColombo spacecraft is performing 9 flybys: among them, the Earth/Moon flyby on April 10, 2020, and the Venus flyby on October 15, 2020 (second Venus flyby around August 10, 2021). Among the few instruments that can operate is MERTIS

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission

    Probing Rock Type, Fe Redox State, and Transition Metal Contents with Six-Window VNIR Spectroscopy Under Venus Conditions

    Get PDF
    VEM-window data are shown to distinguish among key rock types on Venus, and evaluate redox state and transition metal contents of Venus surface rocks

    Cr cluster characterization in Cu-Cr-Zr alloy after ECAP processing and aging using SANS and HAADF-STEM

    Get PDF
    International audienceThe precipitation of nano-sized Cr clusters was investigated in a commercial Cu-1Cr-0.1Zr (wt.%) alloy processed by Equal-Channel Angular Pressing (ECAP) and subsequent aging at 550 °C for 4 hours using small angle neutron scattering (SANS) measurements and high-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM). The size and volume fraction of nano-sized Cr clusters were estimated using both techniques. These parameters assessed from SANS (d~3.2 nm, Fv~1.1 %) agreed reasonably with those from HAADF-STEM (d ~2.5 nm, Fv~2.3%). Besides nano-sized Cr clusters, HAADF-STEM technique evidenced the presence of rare cuboid and spheroid sub-micronic Cr particles about 380-620 nm mean size. Both techniques did not evidence the presence of intermetallic CuxZry phases within the aging conditions
    corecore