3,310 research outputs found

    Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

    Full text link
    We suggest a general rule for the shift quantum numbers k of the relative ground states of antiferromagnetic Heisenberg spin rings. This rule generalizes well-known results of Marshall, Peierls, Lieb, Schultz, and Mattis for even rings. Our rule is confirmed by numerical investigations and rigorous proofs for special cases, including systems with a Haldane gap. Implications for the total spin quantum number S of relative ground states are discussed as well as generalizations to the XXZ model.Comment: 8 pages, 2 figures, submitted to Phys. Rev. B. More information at http://www.physik.uni-osnabrueck.de/makrosysteme

    Polaritons in layered two-dimensional materials

    Get PDF
    In recent years, enhanced light-matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light-matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.T.L. acknowledges financial support by DARPA grant award FA8650-16-2-7640. A.C. acknowledges support by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs. J.D.C. acknowledges financial support from the Office of Naval Research that was administered by the NRL Nanoscience Institute. A.K. and N.X.F. acknowledge the financial support by AFOSR MURI (Award No. FA9550-12-1-0488). L.M.M. acknowledges the Spanish Ministry of Economy and Competitiveness under project MAT2014-53432-C5-1-R. F.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, the European Union H2020 Programme under grant agreement no 604391 Graphene Flagship’, the ERC starting grant (307806, CarbonLight), and project GRASP (FP7-ICT-2013-613024-GRASP).Peer Reviewe

    Multiparticle angular correlations: a probe for the sQGP at RHIC

    Full text link
    A novel decomposition technique is used to extract the centrality dependence of di-jet properties and yields from azimuthal correlation functions obtained in Au+Au collisions at sNN\sqrt{s_{_{\rm NN}}}=200 GeV. The width of the near-side jet shows very little dependence on centrality. In contrast, the away-side jet indicates substantial broadening as well as hints for for a local minimum at Δϕ=π\Delta \phi=\pi for central and mid-central events. The yield of jet-pairs (per trigger particle) slowly increases with centrality for both the near- and away-side jets. These observed features are compatible with several recent theoretical predictions of possible modifications of di-jet fragmentation by a strongly interacting medium. Several new experimental approaches, including the study of flavor permutation and higher order multi-particle correlations, that might help to distinguish between different theoretical scenarios are discussed.Comment: Proceedings of the MIT workshop on correlations and fluctation

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Jet tomography

    Full text link
    I summarize the recent advances in jet tomographic studies of cold and hot nuclear matter based on perturbative QCD calculations of medium-induced gluon bremsstrahlung. Quantitative applications to ultrarelativistic heavy ion reactions at RHIC indicate the creation of a deconfined state of QCD with initial energy density on the order of 100 times cold nuclear matter density.Comment: Plenary talk given at the seventeenth international conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004). 8 pages, 12 figures. Updated references, updated Table

    Linking Dynamical and Thermal Models of Ultrarelativistic Nuclear Scattering

    Get PDF
    To analyse ultrarelativistic nuclear interactions, usually either dynamical models like the string model are employed, or a thermal treatment based on hadrons or quarks is applied. String models encounter problems due to high string densities, thermal approaches are too simplistic considering only average distributions, ignoring fluctuations. We propose a completely new approach, providing a link between the two treatments, and avoiding their main shortcomings: based on the string model, connected regions of high energy density are identified for single events, such regions referred to as quark matter droplets. Each individual droplet hadronizes instantaneously according to the available n-body phase space. Due to the huge number of possible hadron configurations, special Monte Carlo techniques have been developed to calculate this disintegration.Comment: Complete paper enclosed as postscript file (uuencoded

    Nuclear Physics Experiments with Ion Storage Rings

    Get PDF
    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.Comment: XVIth International Conference on Electro-Magnetic Isotope Separators and Techniques Related to their Applications, December 2--7, 2012 at Matsue, Japa

    Decay modes of 250No

    Full text link
    The Fragment Mass Analyzer at the ATLAS facility has been used to unambiguously identify the mass number associated with different decay modes of the nobelium isotopes produced via 204Pb(48Ca,xn)(252-x)No reactions. Isotopically pure (>99.7%) 204Pb targets were used to reduce background from more favored reactions on heavier lead isotopes. Two spontaneous fission half-lives (t_1/2 = 3.7+1.1-0.8 us and 43+22-15 us) were deduced from a total of 158 fission events. Both decays originate from 250No rather than from neighboring isotopes as previously suggested. The longer activity most likely corresponds to a K-isomer in this nucleus. No conclusive evidence for an alpha branch was observed, resulting in upper limits of 2.1% for the shorter lifetime and 3.4% for the longer activity.Comment: RevTex4, 10 pages, 5 figures, submitted to PR

    CGC, Hydrodynamics, and the Parton Energy Loss

    Full text link
    Hadron spectra in Au+Au collisions at RHIC are calculated by hydrodynamics with initial conditions from the Color Glass Condensate (CGC). Minijet components with parton energy loss in medium are also taken into account by using parton density obtained from hydrodynamical simulations. We found that CGC provides a good initial condition for hydrodynamics in Au+Au collisions at RHIC.Comment: Quark Matter 2004 contribution, 4 pages, 2 figure

    Hydrodynamic afterburner for the CGC at RHIC

    Full text link
    Firstly, we give a short review about the hydrodynamic model and its application to the elliptic flow phenomena in relativistic heavy ion collisions. Secondly, we show the first approach to construct a unified model for the description of the dynamics in relativistic heavy ion collisions.Comment: 15 pages, 7 figures, invited talk presented at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US
    corecore