110 research outputs found
Measuring procedures for surface evaluation of additively manufactured powder bed-based polymer and metal parts
AbstractPowder bed-based additive manufacturing has become increasingly important for industrial applications. In the light of this, qualitative considerations such as the geometrical accuracy, the resulting mechanical properties, and the surface quality of additively manufactured parts must be taken into account. Optical measuring techniques such as confocal laser scanning microscopy, fringe projection and focus variation as well as profilometers are evaluated here, to determine the surface quality of powder bed-based manufactured parts. Even though these surface evaluation methods are established commercially, no standardized measuring procedure has yet been established. Within an experimental study the validity and accuracy of surface measurement methods are evaluated below, taking the limitations of each measurement system and the comparability of areal surface textures into account. The examinations are carried out with the powder materials EN-AW2024, Ti-6V-4Al and PA12, which are processed by electron beam melting, and laser beam melting of metals and polymers. Guidance for a consistent and comparable surface evaluation is thereby provided
Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures
The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth
Recommended from our members
Using Distributed Temperature Sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux
We present one of the first studies of the use of Distributed Temperature Sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer and in the soil. Our field site was at a groundwater-fed wet meadow in the Netherlands covered by a canopy layer (between 0-0.5 m thickness) consisting of grass and sedges. At this site, we ran a single cable across the surface in parallel 40 m sections spaced by 2 m, to create a 40×40 m monitoring field for GST. We also buried a short length (≈10 m) of cable to depth of 0.1±0.02 m to measure soil temperature. We monitored the temperature along the entire cable continuously over a two-day period and captured the diurnal course of GST, and how it was affected by rainfall and canopy structure. The diurnal GST range, as observed by the DTS system, varied between 20.94 and 35.08◦C; precipitation events acted to suppress the range of GST. The spatial distribution of GST correlated with canopy vegetation height during both day and night. Using estimates of thermal inertia, combined with a harmonic analysis of GST and soil temperature, substrate and soil-heat fluxes were determined. Our observations demonstrate how the use of DTS shows great promise in better characterising area-average substrate/soil heat flux, their spatiotemporal variability, and how this variability is affected by canopy structure. The DTS system is able to provide a much richer data set than could be obtained from point temperature sensors. Furthermore, substrate heat fluxes derived from GST measurements may be able to provide improved closure of the land surface energy balance in micrometeorological field studies. This will enhance our understanding of how hydrometeorological processes interact with near-surface heat fluxes
Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)
This article is a report of the fourth meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in Malmö, Sweden on 23–24 April 2015 (HOME IV). The aim of the meeting was to achieve consensus over the preferred outcome instruments for measuring patient-reported symptoms and quality of life for the HOME core outcome set for atopic eczema (AE). Following presentations, which included data from systematic reviews, consensus discussions were held in a mixture of whole group and small group discussions. Small groups were allocated a priori to ensure representation of different stakeholders and countries. Decisions were voted on using electronic keypads. For the patient-reported symptoms, the group agreed by vote that itch, sleep loss, dryness, redness/inflamed skin and irritated skin were all considered essential aspects of AE symptoms. Many instruments for capturing patient-reported symptoms were discussed [including the Patient-Oriented SCOring Atopic Dermatitis index, Patient-Oriented Eczema Measure (POEM), Self-Administered Eczema Area and Severity Index, Itch Severity Scale, Atopic Dermatitis Quickscore and the Nottingham Eczema Severity Score] and, by consensus, POEM was selected as the preferred instrument to measure patient-reported symptoms. Further work is needed to determine the reliability and measurement error of POEM. Further work is also required to establish the importance of pain/soreness and the importance of collecting information regarding the intensity of symptoms in addition to their frequency. Much of the discussion on quality of life concerned the Dermatology Life Quality Index and Quality of Life Index for Atopic Dermatitis; however, consensus on a preferred instrument for measuring this domain could not be reached. In summary, POEM is recommended as the HOME core outcome instrument for measuring AE symptoms
- …