58 research outputs found

    Microbiome Modelling Toolbox 2.0: efficient, tractable modelling of microbiome communities

    Get PDF
    Motivation: Constraint-Based Reconstruction and Analysis (COBRA) is a widely used approach for the interrogation and stratification of microbiome samples, yet applications to large-scale cohorts are hampered by limited scalability and efficiency of simulations. Results: We substantially improved the computation speed and scalability of a previous implementation for the construction and interrogation of personalized constraint-based microbiome models as well as implemented additional functionalities for analysis and visualization. Availability and implementation: Microbiome Modelling Toolbox and tutorials are freely available as part of the COBRA Toolbox at https://git.io/microbiomeModelingToolbox

    Advances in constraint-based modelling of microbial communities

    Get PDF
    Abstract Microbial communities are near universally present in nature. A wealth of meta-omics data has been gathered from numerous ecosystems, such as the human gut, ocean or soil. Constraint-based reconstruction and analysis is a valuable tool for the contextualisation of meta-omics data and allows for the mechanistic prediction of metabolic fluxes. Advances in genome-scale reconstruction and multispecies modelling tools have enabled the construction and interrogation of constraint-based multispecies models on the microbiome scale spanning hundreds of organisms. Here, we give a comprehensive overview of the areas of application for these multiscale, strain- and molecule-resolved multispecies models, and discuss key works, in which computational modelling yielded novel biological knowledge. We show that constraint-based microbiome modelling can complement experimental approaches and has valuable applications spanning from ecology, human health, industry to environmental conservation

    Quantitative systems pharmacology and the personalized drug–microbiota–diet axis

    Get PDF
    Precision medicine is an emerging paradigm that aims at maximizing the benefits and minimizing the adverse effects of drugs. Realistic mechanistic models are needed to understand and limit heterogeneity in drug responses. While pharmacokinetic models describe in detail a drug's absorption and metabolism, they generally do not account for individual variations in response to environmental influences, in addition to genetic variation. For instance, the human gut microbiota metabolizes drugs and is modulated by diet, and it exhibits significant variation among individuals. However, the influence of the gut microbiota on drug failure or drug side effects is under-researched. Here, we review recent advances in computational modeling approaches that could contribute to a better, mechanism-based understanding of drug–microbiota–diet interactions and their contribution to individual drug responses. By integrating systems biology and quantitative systems pharmacology with microbiology and nutrition, the conceptually and technologically demand for novel approaches could be met to enable the study of individual variability, thereby providing breakthrough support for progress in precision medicine

    The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities

    Get PDF
    The application of constraint-based modeling to functionally analyze metagenomic data has been limited so far, partially due to the absence of suitable toolboxes. To address this gap, we created a comprehensive toolbox to model i) microbe-microbe and host-microbe metabolic interactions, and ii) microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox extends the functionality of the COBRA Toolbox. The Microbiome Modeling Toolbox and the tutorials at https://git.io/microbiomeModelingToolbox

    Metabolic Network Analysis Reveals Altered Bile Acid Synthesis and Metabolism in Alzheimer\u27s Disease.

    Get PDF
    Increasing evidence suggests Alzheimer\u27s disease (AD) pathophysiology is influenced by primary and secondary bile acids, the end product of cholesterol metabolism. We analyze 2,114 post-mortem brain transcriptomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals. We also identify putative transcription factors regulating metabolic genes and influencing altered metabolism in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes responsible for their synthesis, suggesting that they may originate from the gut microbiome and are transported to the brain. These findings motivate further research into bile acid metabolism in AD to elucidate their possible connection to cognitive decline

    Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson's Disease.

    Get PDF
    Parkinson's disease (PD) exhibits systemic effects on the human metabolism, with emerging roles for the gut microbiome. Here, we integrate longitudinal metabolome data from 30 drug-naive, de novo PD patients and 30 matched controls with constraint-based modeling of gut microbial communities derived from an independent, drug-naive PD cohort, and prospective data from the general population. Our key results are (1) longitudinal trajectory of metabolites associated with the interconversion of methionine and cysteine via cystathionine differed between PD patients and controls; (2) dopaminergic medication showed strong lipidomic signatures; (3) taurine-conjugated bile acids correlated with the severity of motor symptoms, while low levels of sulfated taurolithocholate were associated with PD incidence in the general population; and (4) computational modeling predicted changes in sulfur metabolism, driven by A. muciniphila and B. wadsworthia, which is consistent with the changed metabolome. The multi-omics integration reveals PD-specific patterns in microbial-host sulfur co-metabolism that may contribute to PD severity

    Circulating metabolites modulated by diet are associated with depression

    Get PDF
    Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.</p

    Recon3D enables a three-dimensional view of gene variation in human metabolism

    Get PDF
    Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D to functionally characterize mutations associated with disease, and identify metabolic response signatures that are caused by exposure to certain drugs. Recon3D represents the most comprehensive human metabolic network model to date, accounting for 3,288 open reading frames (representing 17% of functionally annotated human genes), 13,543 metabolic reactions involving 4,140 unique metabolites, and 12,890 protein structures. These data provide a unique resource for investigating molecular mechanisms of human metabolism. Recon3D is available at http://vmh.life
    • 

    corecore