58 research outputs found

    Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects

    Get PDF
    Contains fulltext : 169731.pdf (publisher's version ) (Open Access)BACKGROUND: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. METHODS: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. RESULTS: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. CONCLUSIONS: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity

    imPlatelet classifier: image-converted RNA biomarker profiles enable blood-based cancer diagnostics

    Get PDF
    Liquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia of Genes and Genomes was also implemented to improve accuracy. Images obtained from samples can then be compared against standard images for specific cancers to determine a diagnosis. We tested imPlatelet on a cohort of 401 non-small cell lung cancer patients, 62 sarcoma patients, and 28 ovarian cancer patients. imPlatelet provided excellent discrimination between lung cancer cases and healthy controls, with accuracy equal to 1 in the independent dataset. When discriminating between noncancer cases and sarcoma or ovarian cancer patients, accuracy equaled 0.91 or 0.95, respectively, in the independent datasets. According to our knowledge, this is the first study implementing an image-based deep-learning approach combined with biological knowledge to classify human samples. The performance of imPlatelet considerably exceeds previously published methods and our own alternative attempts of sample discrimination. We show that the deep-learning image-based classifier accurately identifies cancer, even when a limited number of samples are available.publishedVersio

    STAT1 Hyperphosphorylation and Defective IL12R/IL23R Signaling Underlie Defective Immunity in Autosomal Dominant Chronic Mucocutaneous Candidiasis

    Get PDF
    We recently reported the genetic cause of autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) as a mutation in the STAT1 gene. In the present study we show that STAT1 Arg274Trp mutations in the coiled-coil (CC) domain is the genetic cause of AD-CMC in three families of patients. Cloning and transfection experiments demonstrate that mutated STAT1 inhibits IL12R/IL-23R signaling, with hyperphosphorylation of STAT1 as the likely underlying molecular mechanism. Inhibition of signaling through the receptors for IL-12 and IL-23 leads to strongly diminished Th1/Th17 responses and hence to increased susceptibility to fungal infections. The challenge for the future is to translate this knowledge into novel strategies for the treatment of this severe immunodeficiency

    Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases

    Get PDF
    We recently reported that differential gene expression and DNA methylation profiles in blood leukocytes of apparently healthy smokers predicts with remarkable efficiency diseases and conditions known to be causally associated with smoking, suggesting that blood-based omic profiling of human populations may be useful for linking environmental exposures to potential health effects. Here we report on the sex-specific effects of tobacco smoking on transcriptomic and epigenetic features derived from genome-wide profiling in white blood cells, identifying 26 expression probes and 92 CpG sites, almost all of which are affected only in female smokers. Strikingly, these features relate to numerous genes with a key role in the pathogenesis of cardiovascular disease, especially thrombin signaling, including the thrombin receptors on platelets F2R (coagulation factor II (thrombin) receptor; PAR1) and GP5 (glycoprotein 5), as well as HMOX1 (haem oxygenase 1) and BCL2L1 (BCL2-like 1) which are involved in protection against oxidative stress and apoptosis, respectively. These results are in concordance with epidemiological evidence of higher female susceptibility to tobacco-induced cardiovascular disease and underline the potential of blood-based omic profiling in hazard and risk assessment

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    siRNA injection induces sequence-independent protection in Penaeus monodon against white spot syndrome virus

    No full text
    White spot syndrome virus (WSSV) is a major disease in crustaceans, particularly shrimp, due to the current intensity of aquaculture practices. Novel strategies including vaccination to control this virus would be highly desirable. However, invertebrates lack a true adaptive immune response system and seem to rely on various innate immune responses. An alternative and more specific approach to counteract WSSV infections in shrimp could be by the exploitation of RNA interference. As long dsRNA molecules induce a general, sequence-independent anti-viral immunity in shrimp [Robalino, J., Browdy, C.L., Prior, S., Metz, A., Parnell, P., Gross, P., Warr, G., 2004. J. Virol. 78, 10442-10448], it was investigated whether shorter 21 nt siRNAs with homology to the WSSV vp15 and vp28 genes would give a sequence-specific interference response in the shrimp Penaeus monodon. Vp28 siRNAs as well as nonspecific control gfp siRNAs were able to specifically and efficiently silence their homologous genes in a heterologous baculovirus insect cell expression system. However, in shrimps no such a specific effect was observed. Shrimp injected with vp15 or vp28 siRNAs before WSSV challenge gave a significantly lower mortality rate, but not significantly different when shrimps were injected with gfp siRNA. Thus, large dsRNA molecules as well as siRNAs induce a sequence-independent anti-viral immunity when injected in shrim

    Novel insights into the biology of interleukin-32

    No full text
    Item does not contain fulltextInterleukin (IL)-32 is known as a proinflammatory cytokine that is likely involved in several diseases, including infections, chronic inflammation, and cancer. Since the first report in 2005, IL-32 has been the subject of numerous studies to unravel the biological function of this molecule. For example, silencing of endogenous IL-32 in primary or cell lines of human origin consistently suppressed responses to Toll-like receptors. The protein folding structure of the six isoforms of IL-32 does not resemble that of any classical cytokine and as of this writing, a specific IL-32 receptor has not been identified. Instead, we propose a mechanism by which exposure to extracellular IL-32 or overexpression of the molecule results in binding to intracellular partners that influences functions such as gene expression, cell death, or survival. As such, this review offers insights into the role of IL-32 in several diseases, host defense, inflammation, immune function, and cancer. Finally, possibilities to target IL-32 in several diseases are proposed

    The NOD2 receptor is crucial for immune responses towards New World Leishmania species

    Get PDF
    Contains fulltext : 179623.pdf (publisher's version ) (Open Access

    Alternatively spliced isoforms of IL-32 differentially influence cell death pathways in cancer cell lines

    No full text
    Alternative splicing is a biological mechanism that enables the synthesis of several isoforms with different or even opposite functions. This process must be tightly regulated to prevent unwanted isoform expression favoring pathological processes. Some isoforms of interleukin 32 (IL-32) are reported to be more potent in inducing inflammation, however the role in cell death remains to be investigated. This study demonstrates that IL-32gamma and IL-32beta can induce caspase-8-dependent cell death whereas this was not observed for IL-32alpha. Overexpression of IL-32beta or IL-32gamma but not IL-32alpha, resulted in enhanced expression of the survival cytokine IL-8. Furthermore, restoring the IL-8 signaling pathway by overexpressing CXCR1 in HEK293 cells, rescued IL-32beta but not IL-32gamma-induced cell death. Interestingly, IL-32gamma was able to downregulate CXCR1 and thereby induce cell death. Subsequent studies into the role of IL-32 in thyroid cancer (TC) revealed that several IL-32 isoforms, IL-8, and CXCR1 are expressed in TC cell lines and specimens. Remarkably, TC cell lines were found to produce high concentrations of IL-8, indicating an important role for IL-8 in the survival-signaling pathway in these cells. Intriguingly, a significant correlation between the IL-8 receptor CXCR1 and IL-32gamma was observed in TC specimens, while this was not observed for the other IL-32 splice variants. Blocking IL-32 alternative splicing by Isoginkgetin resulted in predominant expression of IL-32gamma splice variants and cell death in TC cell lines. All together, modulation of IL-32 alternative splicing could represent a novel strategy for the treatment of malignancies, in particular thyroid cancer
    corecore