82 research outputs found

    Mutational analysis of the internal membrane proximal domain of the HIV glycoprotein C-terminus

    Get PDF
    AbstractThis study focuses on the long stretch of highly conserved amino acids in the membrane proximal part of the HIV-1 cytoplasmic tail (Env amino acids (aa) 706–718) upstream of the overlap with the tat and rev second coding exons. Changes in Env aa 713 and 715, although they did not affect Env function, abrogated replicative spread. Other amino acid substitutions, i.e., 706–712, 714 and 716, despite their conservation, did not result in defective replicative phenotypes even in primary peripheral blood lymphocytes. Our results point to their involvement in presently unrecognized essential Env functions pertinent only in in vivo. Interestingly, changes in the codons for residues 717–718 as well as some mutations in residues 714–716 abrogated Gag expression but still allowed expression of functional Env in a rev-independent manner. This could be due to the inactivation of a rev-regulated negative element within the respective nucleotide sequence (8354–8368)

    A tudományos kommunikáció története a Journal des Scavans-tól az open access-ig

    Get PDF
    Background: The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. Results: Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3′ splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3′ splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. Conclusions: The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts

    The hepatitis B virus PRE contains a splicing regulatory element

    Get PDF
    The posttranscriptional regulatory element (PRE) is considered to enhance hepatitis B virus (HBV) gene expression by facilitating the nuclear export of intronless viral subgenomic RNAs. Its role in the RNA metabolism of the viral pregenomic RNA (pgRNA) is currently unknown. We identified a positively cis-acting splicing regulatory element (SRE-1) and present two lines of evidence for its functionality. Firstly, in a heterologous context SRE-1 functionally substitutes for a retroviral bidirectional exonic splicing enhancer (ESE). As expected, SRE-1 is a splicing enhancer also in its natural viral sequence context, since deletion of SRE-1 reduces splicing of pgRNA in cell culture experiments. Secondly, we show that stimulation of HBV RNA splicing by the splicing factor PSF was repressed by the PRE. Analysis of a variety of PSF mutants indicated that RNA-binding and protein–protein interaction were required to enhance splicing. In addition, we show that the PRE contributed to pgRNA stability, but has little influence on its nuclear export. Herein, we report for the first time that the PRE harbors splicing stimulating and inhibiting regulatory elements controlling processing of the viral pregenome. We discuss a model in which the regulation of pgRNA splicing depends on cellular factors interacting with the PRE

    Neutralization of X4- and R5-tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myeloperoxidase (MPO), an important element of the microbicidal activity of neutrophils, generates hypochlorous acid (HOCl) from H<sub>2</sub>O<sub>2 </sub>and chloride, which is released into body fluids. Besides its direct microbicidal activity, HOCl can react with amino acid residues and HOCl-modified proteins can be detected <it>in vivo</it>.</p> <p>Findings</p> <p>This report is based on binding studies of HOCl-modified serum albumins to HIV-1 gp120 and three different neutralization assays using infectious virus. The binding studies were carried out by surface plasmon resonance spectroscopy and by standard ELISA techniques. Virus neutralization assays were carried out using HIV-1 NL4-3 virus and recombinant strains with CXCR4 and CCR5 coreceptor usage. Viral infection was monitored by a standard p24 or X-gal staining assay. Our data demonstrate that HOCl-modified mouse-, bovine- and human serum albumins all bind to the HIV-1 NL4-3 gp120 (LAV) glycoprotein in contrast to non-modified albumin. Binding of HOCl-modified albumin to gp120 correlated to the blockade of CD4 as well as that of V3 loop specific monoclonal antibody binding. In neutralization experiments, HOCl-modified serum albumins inhibited replication and syncytium formation of the X4- and R5-tropic NL4-3 isolates in a dose dependent manner.</p> <p>Conclusions</p> <p>Our data indicate that HOCl-modified serum albumin veils the binding site for CD4 and the V3 loop on gp120. Such masking of the viral gp120/gp41 envelope complex might be a simple but promising strategy to inactivate HIV-1 and therefore prevent infection when HOCl-modified serum albumin is applied, for example, as a topical microbicide.</p

    Extended base pair complementarity between U1 snRNA and the 5′ splice site does not inhibit splicing in higher eukaryotes, but rather increases 5′ splice site recognition

    Get PDF
    Spliceosome formation is initiated by the recognition of the 5′ splice site through formation of an RNA duplex between the 5′ splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5′ splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5′ splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5′ splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5′ splice site interaction does not decrease splicing efficiency, but rather increases 5′ splice site recognition and exon inclusion. However, low complementarity of the 5′ splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome

    Srsf1 and Elavl1 act antagonistically on neuronal fate choice in the developing neocortex by controlling TrkC receptor isoform expression

    Get PDF
    The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo

    Srsf1 and Elavl1 act antagonistically on neuronal fate choice in the developing neocortex by controlling TrkC receptor isoform expression.

    Full text link
    peer reviewedThe seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo

    The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses

    Get PDF
    The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.</p

    Limited complementarity between U1 snRNA and a retroviral 5′ splice site permits its attenuation via RNA secondary structure

    Get PDF
    Multiple types of regulation are used by cells and viruses to control alternative splicing. In murine leukemia virus, accessibility of the 5′ splice site (ss) is regulated by an upstream region, which can fold into a complex RNA stem–loop structure. The underlying sequence of the structure itself is negligible, since most of it could be functionally replaced by a simple heterologous RNA stem–loop preserving the wild-type splicing pattern. Increasing the RNA duplex formation between U1 snRNA and the 5′ss by a compensatory mutation in position +6 led to enhanced splicing. Interestingly, this mutation affects splicing only in the context of the secondary structure, arguing for a dynamic interplay between structure and primary 5′ss sequence. The reduced 5′ss accessibility could also be counteracted by recruiting a splicing enhancer domain via a modified MS2 phage coat protein to a single binding site at the tip of the simple RNA stem–loop. The mechanism of 5′ss attenuation was revealed using hyperstable U1 snRNA mutants, showing that restricted U1 snRNP access is the cause of retroviral alternative splicing
    corecore